#!/usr/bin/env python import numpy as np from WheeledRobot import TankRobotEnv # TankRobot kinematics b = 1 r = 0.1 # Wheel equations J = np.array([ [+1/r, 0, -b/(2*r)], [-1/r, 0, -b/(2*r)] ]) F = np.linalg.pinv(J) def controller_tank_l1(t, X_I, dX_I, target_position): """L1 adaptive control with path planning and dynamic target""" # Controller parameters dx_R_max = 3 L0 = 4 L1 = 4 ... # Calculate control input U = J @ dX_R_des return U def run_simulation(): """Run simulation using Gymnasium environment with L1 adaptive control to dynamic target""" # Initialize environment with fixed target for reproducible results # You can set random_target=True for random target generation env = TankRobotEnv(render_mode="human", random_target=False) observation, _ = env.reset() # Expand render bounds to show target position (default target is at [10,5]) env.set_render_bounds((-2, 12), (-2, 8)) print("Starting Tank Robot L1 Adaptive Control Simulation") print("Controller: L1 adaptive control with path planning to dynamic target") print(f"Target position: [{observation[7]:.2f}, {observation[8]:.2f}, {observation[9]:.2f}]") for step in range(1000): # Extract controller inputs from observation # New observation format: [x, y, theta, dx, dy, dtheta, time, target_x, target_y, target_theta] time = observation[6] # Current time X_I = observation[:3].reshape(-1, 1) # State [x, y, theta] dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta] target_position = observation[7:10] # Target [target_x, target_y, target_theta] # Call L1 adaptive controller with dynamic target U = controller_tank_l1(time, X_I, dX_I, target_position) # Step environment observation, reward, terminated, truncated, _ = env.step(U.flatten()) # Render the environment env.render() # Check if target reached if terminated: print(f"Target reached at step {step}! Reward: {reward:.2f}") break elif truncated: print(f"Maximum steps reached at step {step}") break input("Press Enter to close the simulation window...") env.close() print("Simulation completed") if __name__ == "__main__": run_simulation()