lawarob-wheeled/Ex5_omni_bangbang.py
Eric Seuret af228ce030 Ex5..7
2025-09-30 07:10:55 +02:00

77 lines
2.8 KiB
Python
Executable File

#!/usr/bin/env python
import numpy as np
from WheeledRobot import OmniRobotEnv
# OmniRobot kinematics
a1 = 0.0; b1 = 0.0; l1 = 0.5
a2 = (2/3)*np.pi; b2 = 0.0; l2 = 0.5
a3 = (4/3)*np.pi; b3 = 0.0; l3 = 0.5
r = 0.1
# Kinematics matrix
J = np.array([
[1/r*np.sin(a1+b1), -1/r*np.cos(a1+b1), -l1/r*np.cos(b1)],
[1/r*np.sin(a2+b2), -1/r*np.cos(a2+b2), -l2/r*np.cos(b2)],
[1/r*np.sin(a3+b3), -1/r*np.cos(a3+b3), -l3/r*np.cos(b3)]
])
F = np.linalg.inv(J)
def controller_omni_bangbang(t, X_I, dX_I, target_position):
"""Bang-bang controller with dynamic target position"""
...
# coordinate transform
R_RI = np.array([[ np.cos(X_I[2,0]), np.sin(X_I[2,0]), 0.0],
[-np.sin(X_I[2,0]), np.cos(X_I[2,0]), 0.0],
[ 0.0, 0.0, 1.0]])
dX_R_des = R_RI @ dX_I_des
U = J @ dX_R_des
return U
def run_simulation():
"""Run simulation using Gymnasium environment with bang-bang control to dynamic target"""
# Initialize environment with fixed target to match Sol6 behavior
# You can set random_target=True for random target generation
env = OmniRobotEnv(render_mode="human", random_target=False)
observation, _ = env.reset()
# Expand render bounds to show target position (default target is at [10,5])
env.set_render_bounds((-2, 12), (-2, 8))
print("Starting Omnidirectional Robot Bang-Bang Control Simulation")
print("Controller: Bang-bang control to dynamic target position")
print(f"Target position: [{observation[7]:.2f}, {observation[8]:.2f}, {observation[9]:.2f}]")
for step in range(1000):
# Extract controller inputs from observation
# New observation format: [x, y, theta, dx, dy, dtheta, time, target_x, target_y, target_theta]
time = observation[6] # Current time
X_I = observation[:3].reshape(-1, 1) # State [x, y, theta]
dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta]
target_position = observation[7:10] # Target [target_x, target_y, target_theta]
# Call bang-bang controller with dynamic target
U = controller_omni_bangbang(time, X_I, dX_I, target_position)
# Step environment
observation, reward, terminated, truncated, _ = env.step(U.flatten())
# Render the environment
env.render()
# Check if target reached
if terminated:
print(f"Target reached at step {step}! Reward: {reward:.2f}")
break
elif truncated:
print(f"Maximum steps reached at step {step}")
break
input("Press Enter to close the simulation window...")
env.close()
print("Simulation completed")
if __name__ == "__main__":
run_simulation()