76 lines
2.6 KiB
Python
Executable File
76 lines
2.6 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import numpy as np
|
|
from WheeledRobot import MecanumRobotEnv
|
|
|
|
# MecanumRobot kinematics
|
|
l1 = np.array([+0.5, +0.5]); f1 = np.array([+1, +1])/np.sqrt(2); d1 = np.array([+1, 0])
|
|
l2 = np.array([-0.5, +0.5]); f2 = np.array([-1, +1])/np.sqrt(2); d2 = np.array([+1, 0])
|
|
l3 = np.array([-0.5, -0.5]); f3 = np.array([-1, -1])/np.sqrt(2); d3 = np.array([-1, 0])
|
|
l4 = np.array([+0.5, -0.5]); f4 = np.array([+1, -1])/np.sqrt(2); d4 = np.array([-1, 0])
|
|
r = 0.1
|
|
|
|
# wheel equations
|
|
J11 = f1[1]/(r*d1[0]*f1[1]-r*d1[1]*f1[0])
|
|
J21 = f2[1]/(r*d2[0]*f2[1]-r*d2[1]*f2[0])
|
|
J31 = f3[1]/(r*d3[0]*f3[1]-r*d3[1]*f3[0])
|
|
J41 = f4[1]/(r*d4[0]*f4[1]-r*d4[1]*f4[0])
|
|
J12 = -f1[0]/(r*d1[0]*f1[1]-r*d1[1]*f1[0])
|
|
J22 = -f2[0]/(r*d2[0]*f2[1]-r*d2[1]*f2[0])
|
|
J32 = -f3[0]/(r*d3[0]*f3[1]-r*d3[1]*f3[0])
|
|
J42 = -f4[0]/(r*d4[0]*f4[1]-r*d4[1]*f4[0])
|
|
J13 = (-f1[1]*l1[1]-f1[0]*l1[0])/(r*d1[0]*f1[1]-r*d1[1]*f1[0])
|
|
J23 = (-f2[1]*l2[1]-f2[0]*l2[0])/(r*d2[0]*f2[1]-r*d2[1]*f2[0])
|
|
J33 = (-f3[1]*l3[1]-f3[0]*l3[0])/(r*d3[0]*f3[1]-r*d3[1]*f3[0])
|
|
J43 = (-f4[1]*l4[1]-f4[0]*l4[0])/(r*d4[0]*f4[1]-r*d4[1]*f4[0])
|
|
J = np.array([[J11, J12, J13], [J21, J22, J23], [J31, J32, J33], [J41, J42, J43]])
|
|
|
|
# forward differential kinematics
|
|
F = np.linalg.pinv(J)
|
|
|
|
def controller_mecanum(t, X_I, dX_I):
|
|
# example controller outputs
|
|
radius = 2; period = 10
|
|
dX_R_des = np.array([[2*np.pi*radius/period],[0],[2*np.pi/period]])
|
|
#dX_R_des = np.array([[1],[0],[0]])
|
|
#dX_R_des = np.array([[0],[1],[0]])
|
|
#dX_R_des = np.array([[0],[0],[1]])
|
|
|
|
U = J @ dX_R_des
|
|
return U
|
|
|
|
def run_simulation():
|
|
"""Run simulation using Gymnasium environment"""
|
|
env = MecanumRobotEnv(render_mode="human")
|
|
observation, _ = env.reset()
|
|
|
|
print("Starting Mecanum Robot Simulation")
|
|
print("Controller: Circular motion")
|
|
print(f"Jacobian matrix J:\n{J}")
|
|
|
|
for step in range(1000):
|
|
# Extract controller inputs from observation
|
|
time = observation[6] # Current time
|
|
X_I = observation[:3].reshape(-1, 1) # State [x, y, theta]
|
|
dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta]
|
|
|
|
# Call original controller
|
|
U = controller_mecanum(time, X_I, dX_I)
|
|
|
|
# Step environment
|
|
observation, reward, terminated, truncated, _ = env.step(U.flatten())
|
|
|
|
# Render the environment
|
|
env.render()
|
|
|
|
if terminated or truncated:
|
|
print(f"Simulation ended at step {step}")
|
|
break
|
|
|
|
input("Press Enter to close the simulation window...")
|
|
env.close()
|
|
print("Simulation completed")
|
|
|
|
if __name__ == "__main__":
|
|
run_simulation()
|