29 lines
931 B
Python
29 lines
931 B
Python
|
import Data_Analysis as DA
|
||
|
import pandas as pd
|
||
|
import os
|
||
|
|
||
|
|
||
|
|
||
|
propIds = DA.getuniquePropIdFromDB()
|
||
|
|
||
|
for propId in propIds:
|
||
|
name = f"dok/calendarData_prop{propId}.csv"
|
||
|
if not os.path.exists(name):
|
||
|
print(propId)
|
||
|
scrapeDates, calendarData = DA.getDataFromDB(propId)
|
||
|
if DA.checkForLostProprty(calendarData):
|
||
|
print(f"Lost Proprty: {propId}")
|
||
|
else:
|
||
|
scrapeDates = DA.reformatScrapeDates(scrapeDates)
|
||
|
HeaderDates = DA.getMinMaxDate(calendarData)
|
||
|
data = DA.creatDataMatrix(HeaderDates, calendarData)
|
||
|
|
||
|
# Transform to Dataframe for Plotly
|
||
|
df = pd.DataFrame(data, columns=HeaderDates)
|
||
|
df.insert(0, "ScrapeDate", scrapeDates, True)
|
||
|
|
||
|
df = df.drop(index=0) # Irregulärer Abstand in den Scraping Zeiten (nur 2 Tage)
|
||
|
df = df.drop(df.columns[[1, 2]], axis=1)
|
||
|
df.to_csv(name, index=False)
|
||
|
|