ConsultancyProject_2_ETL/createPropCSV.py

29 lines
931 B
Python
Raw Normal View History

import Data_Analysis as DA
import pandas as pd
import os
propIds = DA.getuniquePropIdFromDB()
for propId in propIds:
name = f"dok/calendarData_prop{propId}.csv"
if not os.path.exists(name):
print(propId)
scrapeDates, calendarData = DA.getDataFromDB(propId)
if DA.checkForLostProprty(calendarData):
print(f"Lost Proprty: {propId}")
else:
scrapeDates = DA.reformatScrapeDates(scrapeDates)
HeaderDates = DA.getMinMaxDate(calendarData)
data = DA.creatDataMatrix(HeaderDates, calendarData)
# Transform to Dataframe for Plotly
df = pd.DataFrame(data, columns=HeaderDates)
df.insert(0, "ScrapeDate", scrapeDates, True)
df = df.drop(index=0) # Irregulärer Abstand in den Scraping Zeiten (nur 2 Tage)
df = df.drop(df.columns[[1, 2]], axis=1)
df.to_csv(name, index=False)