movAverage überarbeitet, closes #17
erster Monat mit wird nun auch angezeigt "Nullstelle" zu Beginn entferntmain
parent
468ad94430
commit
5ffc222430
|
@ -6,6 +6,9 @@ import polars as pl
|
|||
import data
|
||||
from data import etl_cache
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
d = data.load()
|
||||
|
||||
def region_movingAverage(id: int, scrape_date_start_min: str):
|
||||
|
@ -78,7 +81,7 @@ def region_movingAverage(id: int, scrape_date_start_min: str):
|
|||
calDF = calDF.with_columns((pl.col("dates").str.to_date()))
|
||||
|
||||
# Filter out all Data that's in the calculation frame
|
||||
calDF = calDF.filter((pl.col("dates") >= scrape_date_end_min))
|
||||
calDF = calDF.filter((pl.col("dates") >= (scrape_date_start_min + timedelta(days=1))))
|
||||
calDF = calDF.filter((pl.col("dates") < final_end_date))
|
||||
|
||||
# Join all information into one Dataframe
|
||||
|
@ -93,6 +96,7 @@ def region_movingAverage(id: int, scrape_date_start_min: str):
|
|||
outDF = outDF.sort('dates')
|
||||
outDFList.append(outDF)
|
||||
|
||||
|
||||
# Calculate the horizontal Sum for all Dates
|
||||
arrayCunter = 0
|
||||
tempDFList = []
|
||||
|
@ -108,14 +112,13 @@ def region_movingAverage(id: int, scrape_date_start_min: str):
|
|||
tempDFList.append(newDF)
|
||||
|
||||
# Join actual and predict Values
|
||||
outDF = tempDFList[1].join(tempDFList[0], on='dates', how='outer')
|
||||
outDF = tempDFList[0].join(tempDFList[1], on='dates', how='outer')
|
||||
|
||||
# Rename Columns for clarity
|
||||
outDF = outDF.drop_nulls()
|
||||
outDF = outDF.drop('dates_right')
|
||||
|
||||
# sum_hor_predict is the data from the earlier ScrapeDate
|
||||
outDF = outDF.rename({'sum_hor': 'sum_hor_actual', 'sum_hor_right': 'sum_hor_predict'})
|
||||
outDF = outDF.rename({'sum_hor_right': 'sum_hor_actual', 'sum_hor': 'sum_hor_predict'})
|
||||
|
||||
# Calculate Moving average from Start
|
||||
baseValues = outDF.get_column('sum_hor_predict').to_list()
|
||||
|
@ -133,6 +136,7 @@ def region_movingAverage(id: int, scrape_date_start_min: str):
|
|||
|
||||
# Add moving_averages to df
|
||||
outDF = outDF.with_columns(moving_averages=pl.Series(moving_averages))
|
||||
|
||||
result = {'dates':outDF.get_column('dates').to_list(), 'cap_earlierTimeframe':outDF.get_column('sum_hor_predict').to_list(), 'cap_laterTimeframe':outDF.get_column('sum_hor_actual').to_list(), 'movAvg':outDF.get_column('moving_averages').to_list(),}
|
||||
etl_cache.saveObj(file, result)
|
||||
return result
|
Loading…
Reference in New Issue