diff --git a/.gitignore b/.gitignore index 3cae330..492f926 100644 --- a/.gitignore +++ b/.gitignore @@ -66,4 +66,8 @@ env3.*/ # duckdb *.duckdb +# cache +*.obj + /src/mauro/dok/ + diff --git a/etl/src/data/etl_cache.py b/etl/src/data/etl_cache.py new file mode 100644 index 0000000..4e7ae30 --- /dev/null +++ b/etl/src/data/etl_cache.py @@ -0,0 +1,18 @@ +from pathlib import Path +from pickle import dump, load + +Path('cache').mkdir(parents=True, exist_ok=True) + +# load pickle obj +def openObj(file): + filepath = Path(f"cache/{file}") + if filepath.is_file(): + with open(filepath, 'rb') as f: + return load(f) + return False + +# save pickle obj +def saveObj(file, result): + filepath = Path(f"cache/{file}") + with open(filepath, 'wb') as f: + dump(result, f) \ No newline at end of file diff --git a/etl/src/data/etl_property_capacities.py b/etl/src/data/etl_property_capacities.py index e608a19..35339c1 100644 --- a/etl/src/data/etl_property_capacities.py +++ b/etl/src/data/etl_property_capacities.py @@ -3,11 +3,17 @@ from io import StringIO import polars as pl import data +from data import etl_cache d = data.load() def property_capacities(id: int): + file = f"etl_property_capacities_{id}.obj" + obj = etl_cache.openObj(file) + if obj: + return obj + extractions = d.extractions_for(id).pl() df_dates = pl.DataFrame() @@ -35,4 +41,6 @@ def property_capacities(id: int): max_capacity_perc = 100 / max_capacity result['capacities'].append(round(max_capacity_perc * row['sum'], 2)) result['capacities'].reverse() + + etl_cache.saveObj(file, result) return result \ No newline at end of file diff --git a/etl/src/data/etl_property_capacities_monthly.py b/etl/src/data/etl_property_capacities_monthly.py index a582af7..1af6797 100644 --- a/etl/src/data/etl_property_capacities_monthly.py +++ b/etl/src/data/etl_property_capacities_monthly.py @@ -3,10 +3,17 @@ from io import StringIO import polars as pl import data +from data import etl_cache d = data.load() def property_capacities_monthly(id: int, scrapeDate: str): + + file = f"etl_property_capacities_monthly_{id}.obj" + obj = etl_cache.openObj(file) + if obj: + return obj + extractions = d.extractions_propId_scrapeDate(id, scrapeDate).pl() df_calendar = pl.DataFrame() @@ -24,4 +31,5 @@ def property_capacities_monthly(id: int, scrapeDate: str): df_calendar = df_calendar.sort('dates') df_calendar = df_calendar.drop('dates') result = {"scraping-date": scrapeDate, "months": df_calendar['date_short'].to_list(), 'capacities': df_calendar['column_0'].to_list()} - return result \ No newline at end of file + etl_cache.saveObj(file, result) + return result diff --git a/etl/src/data/etl_property_capacities_weekdays.py b/etl/src/data/etl_property_capacities_weekdays.py index e8e6f45..486ab4b 100644 --- a/etl/src/data/etl_property_capacities_weekdays.py +++ b/etl/src/data/etl_property_capacities_weekdays.py @@ -3,10 +3,17 @@ from io import StringIO import polars as pl import data +from data import etl_cache d = data.load() def property_capacities_weekdays(id: int, scrapeDate: str): + + file = f"etl_property_capacities_weekdays_{id}.obj" + obj = etl_cache.openObj(file) + if obj: + return obj + extractions = d.extractions_propId_scrapeDate(id, scrapeDate).pl() weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] df_calendar = pl.DataFrame() @@ -30,4 +37,5 @@ def property_capacities_weekdays(id: int, scrapeDate: str): df_calendar = df_calendar.drop('weekday_num') result = {"scraping-date": scrapeDate, "weekdays": df_calendar['weekday'].to_list(), 'capacities': df_calendar['column_0'].to_list()} + etl_cache.saveObj(file, result) return result \ No newline at end of file diff --git a/etl/src/data/etl_property_neighbours.py b/etl/src/data/etl_property_neighbours.py index 9d12738..b861232 100644 --- a/etl/src/data/etl_property_neighbours.py +++ b/etl/src/data/etl_property_neighbours.py @@ -1,7 +1,9 @@ +from math import asin, atan2, cos, degrees, radians, sin, sqrt + import polars as pl -from math import radians, cos, sin, asin, sqrt, degrees, atan2 import data +from data import etl_cache d = data.load() @@ -23,6 +25,12 @@ def calcHaversinDistance(latMain, lonMain, lat, lon): return d def property_neighbours(id: int): + + file = f"etl_property_neighbours_{id}.obj" + obj = etl_cache.openObj(file) + if obj: + return obj + extractions = d.properties_geo_seeds().pl() # Get lat, long and region from main property @@ -61,6 +69,6 @@ def property_neighbours(id: int): #result = {"ids": extractions['id'].to_list(), "lat": extractions['lat'].to_list(), "lon": extractions['lon'].to_list()} result = extractions.to_dicts() - + etl_cache.saveObj(file, result) return result \ No newline at end of file diff --git a/etl/src/data/etl_region_capacities.py b/etl/src/data/etl_region_capacities.py index 39b0b0b..16d3418 100644 --- a/etl/src/data/etl_region_capacities.py +++ b/etl/src/data/etl_region_capacities.py @@ -4,11 +4,17 @@ from io import StringIO import polars as pl import data +from data import etl_cache d = data.load() def region_capacities(id: int): + file = f"etl_region_capacities_{id}.obj" + obj = etl_cache.openObj(file) + if obj: + return obj + # Get Data if id == -1: extractions = d.capacity_global().pl() @@ -47,4 +53,6 @@ def region_capacities(id: int): df = df.cast({"scrape_date": date}).sort('scrape_date') result = {"capacities": df['capacity'].to_list(), "dates": df['scrape_date'].to_list()} + + etl_cache.saveObj(file, result) return result \ No newline at end of file diff --git a/etl/src/data/etl_region_capacities_monthly.py b/etl/src/data/etl_region_capacities_monthly.py index 01c1d36..d2b2b61 100644 --- a/etl/src/data/etl_region_capacities_monthly.py +++ b/etl/src/data/etl_region_capacities_monthly.py @@ -1,15 +1,21 @@ +from datetime import datetime, timedelta from io import StringIO import polars as pl import data - -from datetime import datetime, timedelta +from data import etl_cache d = data.load() def region_capacities_monthly(id: int, scrapeDate_start: str): + + file = f"etl_region_capacities_monthly_{id}.obj" + obj = etl_cache.openObj(file) + if obj: + return obj + # String to Date scrapeDate_start = datetime.strptime(scrapeDate_start, '%Y-%m-%d') @@ -50,4 +56,5 @@ def region_capacities_monthly(id: int, scrapeDate_start: str): outDf = outDf[['date_short', 'mean']] result = {"scraping-date": scrapeDate, "months": outDf['date_short'].to_list(),'capacities': outDf['mean'].to_list()} + etl_cache.saveObj(file, result) return result \ No newline at end of file diff --git a/etl/src/data/etl_region_capacities_weekdays.py b/etl/src/data/etl_region_capacities_weekdays.py index c97bc93..8bdb4f5 100644 --- a/etl/src/data/etl_region_capacities_weekdays.py +++ b/etl/src/data/etl_region_capacities_weekdays.py @@ -1,15 +1,20 @@ +from datetime import datetime, timedelta from io import StringIO import polars as pl import data - -from datetime import datetime, timedelta +from data import etl_cache d = data.load() - def region_capacities_weekdays(id: int, scrapeDate_start: str): + + file = f"etl_region_capacities_weekdays_{id}.obj" + obj = etl_cache.openObj(file) + if obj: + return obj + # String to Date scrapeDate_start = datetime.strptime(scrapeDate_start, '%Y-%m-%d') @@ -53,4 +58,5 @@ def region_capacities_weekdays(id: int, scrapeDate_start: str): outDf = outDf[['weekday', 'mean']] result = {"scraping-date": scrapeDate, "weekdays": outDf['weekday'].to_list(),'capacities': outDf['mean'].to_list()} + etl_cache.saveObj(file, result) return result \ No newline at end of file diff --git a/etl/src/data/etl_region_movAverage.py b/etl/src/data/etl_region_movAverage.py index 362755d..a25a052 100644 --- a/etl/src/data/etl_region_movAverage.py +++ b/etl/src/data/etl_region_movAverage.py @@ -4,10 +4,17 @@ from io import StringIO import polars as pl import data +from data import etl_cache d = data.load() def region_movingAverage(id: int, scrape_date_start_min: str): + + file = f"etl_region_movingAverage_{id}.obj" + obj = etl_cache.openObj(file) + if obj: + return obj + # Settings # Offset between actual and predict ScrapeDate timeOffset = 30 @@ -119,4 +126,5 @@ def region_movingAverage(id: int, scrape_date_start_min: str): # Add moving_averages to df outDF = outDF.with_columns(moving_averages=pl.Series(moving_averages)) result = {'dates':outDF.get_column('dates').to_list(), 'cap_earlierTimeframe':outDF.get_column('sum_hor_predict').to_list(), 'cap_laterTimeframe':outDF.get_column('sum_hor_actual').to_list(), 'movAvg':outDF.get_column('moving_averages').to_list(),} + etl_cache.saveObj(file, result) return result \ No newline at end of file diff --git a/etl/src/data/etl_region_properties_capacities.py b/etl/src/data/etl_region_properties_capacities.py index c2d564b..d1ba1f5 100644 --- a/etl/src/data/etl_region_properties_capacities.py +++ b/etl/src/data/etl_region_properties_capacities.py @@ -3,10 +3,17 @@ from io import StringIO import polars as pl import data +from data import etl_cache d = data.load() def region_properties_capacities(id: int): + + file = f"etl_region_properties_capacities_{id}.obj" + obj = etl_cache.openObj(file) + if obj: + return obj + # Get Data if id == -1: df = d.capacity_global().pl() @@ -53,5 +60,5 @@ def region_properties_capacities(id: int): # Create JSON outDict = {'scrapeDates': listOfDates, 'property_ids': listOfPropertyIDs, 'values': values} - + etl_cache.saveObj(file, outDict) return outDict \ No newline at end of file