Gitea Issue 2 resolved
#2 etl_region_capacities.py: neues Output Format = [datum, prop_id, capacity]main
parent
281d9d3f5a
commit
8fcaf2a6f7
|
@ -23,10 +23,8 @@ def region_capacities(id: int):
|
|||
# Merge Dataframe to generate indices
|
||||
df = df.join(datesDF, on='ScrapeDate')
|
||||
df = df.join(propIdDF, on='property_id')
|
||||
|
||||
# Drop now useless columns ScrapeDate and property_id
|
||||
df = df[['calendarBody', 'date_index', 'prop_index']]
|
||||
|
||||
df = df[['ScrapeDate', 'calendarBody', 'date_index', 'prop_index']]
|
||||
# Calculate grid values
|
||||
gridData = []
|
||||
for row in df.rows(named=True):
|
||||
|
@ -36,13 +34,18 @@ def region_capacities(id: int):
|
|||
sum_hor = calDF.sum_horizontal()[0]
|
||||
else:
|
||||
sum_hor = 0
|
||||
gridData.append([row['prop_index'], row['date_index'], sum_hor])
|
||||
gridData = np.array(gridData)
|
||||
# With Index
|
||||
# gridData.append([row['prop_index'], row['date_index'], sum_hor])
|
||||
# With ScrapeDate
|
||||
gridData.append([row['ScrapeDate'], row['date_index'], sum_hor])
|
||||
|
||||
gridData = np.array(gridData)
|
||||
# get all values to calculate Max
|
||||
allValues = gridData[:, 2]
|
||||
allValues = gridData[:, 2].astype(int)
|
||||
print(allValues)
|
||||
maxValue = np.max(allValues)
|
||||
gridData[:, 2] = (gridData[:, 2]*100)/maxValue
|
||||
print(maxValue)
|
||||
gridData[:, 2] = (allValues*100)/maxValue
|
||||
|
||||
# Return back to list
|
||||
gridData = gridData.tolist()
|
||||
|
@ -55,3 +58,6 @@ def region_capacities(id: int):
|
|||
outDict = {'scrapeDates': listOfDates, 'property_ids': listOfPropertyIDs, 'values': gridData}
|
||||
|
||||
return outDict
|
||||
|
||||
out = region_capacities(1)
|
||||
print(out)
|
Loading…
Reference in New Issue