First Version of etl_region_movAverage.py eingefügt
parent
f31c23ea51
commit
b23879b6d3
|
@ -5,6 +5,7 @@ from data import etl_property_capacities_monthly as etl_pcm
|
|||
from data import etl_property_capacities_weekdays as etl_pcw
|
||||
from data import etl_property_neighbours as etl_pn
|
||||
from data import etl_region_capacities as etl_rc
|
||||
from data import etl_region_movAverage as etl_rmA
|
||||
from data import etl_region_properties_capacities as etl_rpc
|
||||
from data import etl_region_capacities_comparison as etl_rcc
|
||||
from fastapi import FastAPI, Response
|
||||
|
@ -80,3 +81,7 @@ def region_capacities_data(id_1: int, id_2: int):
|
|||
capacities = etl_rcc.region_capacities_comparison(id_1, id_2)
|
||||
return capacities
|
||||
|
||||
@app.get("/region/{id}/movingAverage/{startDate}")
|
||||
def region_capacities_data(id: int, startDate: str):
|
||||
result = etl_rmA.region_movingAverage(id, startDate)
|
||||
return result
|
||||
|
|
|
@ -0,0 +1,114 @@
|
|||
import polars as pl
|
||||
from io import StringIO
|
||||
from datetime import datetime, timedelta, date
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import data
|
||||
|
||||
d = data.load()
|
||||
|
||||
def region_movingAverage(id: int, scrape_date_start_min: str):
|
||||
# Settings
|
||||
# Offset between actual and predict ScrapeDate
|
||||
timeOffset = 30
|
||||
|
||||
# Calculation Frame
|
||||
calcFrame = 180
|
||||
|
||||
# Filter Setting
|
||||
windowSize = 7
|
||||
|
||||
# String to Date
|
||||
scrape_date_start_min = datetime.strptime(scrape_date_start_min, '%Y-%m-%d')
|
||||
|
||||
# Get end date of start search-window
|
||||
scrape_date_start_max = scrape_date_start_min + timedelta(days=1)
|
||||
|
||||
# Get start and end date of End search-window
|
||||
scrape_date_end_min = scrape_date_start_min + timedelta(days=timeOffset)
|
||||
scrape_date_end_max = scrape_date_end_min + timedelta(days=1)
|
||||
|
||||
final_end_date = scrape_date_end_min + timedelta(days=calcFrame)
|
||||
|
||||
ex_start = d.singleScrape_of_region(id, scrape_date_start_min, scrape_date_start_max)
|
||||
ex_start_count = ex_start.shape[0]
|
||||
|
||||
ex_end = d.singleScrape_of_region(id, scrape_date_end_min, scrape_date_end_max)
|
||||
ex_end_count = ex_end.shape[0]
|
||||
|
||||
num_properties = [ex_start_count, ex_end_count]
|
||||
start_end = [ex_start, ex_end]
|
||||
outDFList = []
|
||||
|
||||
for df in start_end:
|
||||
df = df.pl()
|
||||
firstExe = True
|
||||
counter = 1
|
||||
outDF = pl.DataFrame(schema={"0": int, "dates": date})
|
||||
for row in df.rows(named=True):
|
||||
if row['calendarBody']:
|
||||
calDF = pl.read_json(StringIO(row['calendarBody']))
|
||||
columnTitles = calDF.columns
|
||||
calDF = calDF.transpose()
|
||||
calDF = calDF.with_columns(pl.Series(name="dates", values=columnTitles))
|
||||
calDF = calDF.with_columns((pl.col("dates").str.to_date()))
|
||||
|
||||
# Filter out all Data that's in the calculation frame
|
||||
calDF = calDF.filter((pl.col("dates") >= scrape_date_end_min))
|
||||
calDF = calDF.filter((pl.col("dates") < final_end_date))
|
||||
|
||||
# Join all information into one Dataframe
|
||||
if firstExe:
|
||||
outDF = calDF
|
||||
firstExe = False
|
||||
else:
|
||||
outDF = outDF.join(calDF, on='dates')
|
||||
outDF = outDF.rename({'column_0': str(counter)})
|
||||
counter += 1
|
||||
|
||||
outDF = outDF.sort('dates')
|
||||
outDFList.append(outDF)
|
||||
|
||||
# Calculate the horizontal Sum for all Dates
|
||||
arrayCunter = 0
|
||||
tempDFList = []
|
||||
for df in outDFList:
|
||||
dates = df.select(pl.col("dates"))
|
||||
values = df.select(pl.exclude("dates"))
|
||||
sum_hor = values.sum_horizontal()
|
||||
|
||||
sum_hor = sum_hor / num_properties[arrayCunter] / 2
|
||||
arrayCunter += 1
|
||||
|
||||
newDF = dates.with_columns(sum_hor=pl.Series(sum_hor))
|
||||
tempDFList.append(newDF)
|
||||
|
||||
# Join actual and predict Values
|
||||
outDF = tempDFList[1].join(tempDFList[0], on='dates', how='outer')
|
||||
|
||||
# Rename Columns for clarity
|
||||
outDF = outDF.drop_nulls()
|
||||
outDF = outDF.drop('dates_right')
|
||||
|
||||
# sum_hor_predict is the data from the earlier ScrapeDate
|
||||
outDF = outDF.rename({'sum_hor': 'sum_hor_actual', 'sum_hor_right': 'sum_hor_predict'})
|
||||
|
||||
# Calculate Moving average from Start
|
||||
baseValues = outDF.get_column('sum_hor_predict').to_list()
|
||||
i = 0
|
||||
moving_averages = []
|
||||
while i < len(baseValues) - windowSize + 1:
|
||||
window = baseValues[i: i + windowSize]
|
||||
window_average = sum(window) / windowSize
|
||||
moving_averages.append(window_average)
|
||||
i += 1
|
||||
|
||||
# Add empty values back to the front and end of moving_averages
|
||||
num_empty = int(windowSize / 2)
|
||||
moving_averages = [None] *num_empty + moving_averages + [None] * num_empty
|
||||
|
||||
# Add moving_averages to df
|
||||
outDF = outDF.with_columns(moving_averages=pl.Series(moving_averages))
|
||||
|
||||
result = {'dates':outDF.get_column('dates').to_list(), 'cap_earlierTimeframe':outDF.get_column('sum_hor_predict').to_list(), 'cap_laterTimeframe':outDF.get_column('sum_hor_actual').to_list(), 'movAvg':outDF.get_column('moving_averages').to_list(),}
|
||||
return result
|
Loading…
Reference in New Issue