Unbenutzer ETL Prozess gelöscht
parent
e67636dbd6
commit
e758e064d0
|
@ -1,66 +0,0 @@
|
||||||
from io import StringIO
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import polars as pl
|
|
||||||
|
|
||||||
import data
|
|
||||||
|
|
||||||
d = data.load()
|
|
||||||
|
|
||||||
def region_capacities_comparison(id_1: int, id_2: int):
|
|
||||||
fulldf = d.capacity_comparison_of_region(id_1, id_2).pl()
|
|
||||||
# turn PropertyIDs and seedIDs to ints for sorting and filtering
|
|
||||||
fulldf = fulldf.cast({"property_id": int})
|
|
||||||
fulldf = fulldf.cast({"seed_id": int})
|
|
||||||
df_region1 = fulldf.filter(pl.col("seed_id") == id_1)
|
|
||||||
df_region2 = fulldf.filter(pl.col("seed_id") == id_2)
|
|
||||||
df_list = [df_region1, df_region2]
|
|
||||||
outDictList = []
|
|
||||||
|
|
||||||
for df in df_list:
|
|
||||||
# Get uniques for dates and propIDs and sort them
|
|
||||||
listOfDates = df.get_column("ScrapeDate").unique().sort()
|
|
||||||
listOfPropertyIDs = df.get_column("property_id").unique().sort()
|
|
||||||
|
|
||||||
# Create DFs from lists to merge later
|
|
||||||
datesDF = pl.DataFrame(listOfDates).with_row_index("date_index")
|
|
||||||
propIdDF = pl.DataFrame(listOfPropertyIDs).with_row_index("prop_index")
|
|
||||||
|
|
||||||
# Merge Dataframe to generate indices
|
|
||||||
df = df.join(datesDF, on='ScrapeDate')
|
|
||||||
df = df.join(propIdDF, on='property_id')
|
|
||||||
# Drop now useless columns ScrapeDate and property_id
|
|
||||||
df = df[['ScrapeDate', 'calendarBody', 'date_index', 'prop_index']]
|
|
||||||
# Calculate grid values
|
|
||||||
gridData = []
|
|
||||||
for row in df.rows(named=True):
|
|
||||||
# Return 0 for sum if calendar is null
|
|
||||||
if row['calendarBody']:
|
|
||||||
calDF = pl.read_json(StringIO(row['calendarBody']))
|
|
||||||
sum_hor = calDF.sum_horizontal()[0]
|
|
||||||
else:
|
|
||||||
sum_hor = 0
|
|
||||||
# With Index
|
|
||||||
# gridData.append([row['prop_index'], row['date_index'], sum_hor])
|
|
||||||
# With ScrapeDate
|
|
||||||
gridData.append([row['ScrapeDate'], row['date_index'], sum_hor])
|
|
||||||
|
|
||||||
gridData = np.array(gridData)
|
|
||||||
# get all values to calculate Max
|
|
||||||
allValues = gridData[:, 2].astype(int)
|
|
||||||
maxValue = np.max(allValues)
|
|
||||||
gridData[:, 2] = (allValues*100)/maxValue
|
|
||||||
|
|
||||||
# Return back to list
|
|
||||||
gridData = gridData.tolist()
|
|
||||||
|
|
||||||
# Cast listOfDates to datetime
|
|
||||||
listOfDates = listOfDates.cast(pl.Date).to_list()
|
|
||||||
listOfPropertyIDs = listOfPropertyIDs.to_list()
|
|
||||||
|
|
||||||
# Create JSON
|
|
||||||
tempDict = {'dates': listOfDates, 'property_ids': listOfPropertyIDs, 'values': gridData}
|
|
||||||
outDictList.append(tempDict)
|
|
||||||
|
|
||||||
outDict = {'region1': outDictList[0], 'region2': outDictList[1],}
|
|
||||||
return outDict
|
|
Loading…
Reference in New Issue