Ortsvergleich eingefügt
parent
c7d58c2b23
commit
f7b62f4e4c
|
@ -4,6 +4,17 @@ from datetime import datetime, timedelta
|
|||
import numpy as np
|
||||
|
||||
|
||||
def getPropertyDataFromDB():
|
||||
db = MySQLdb.connect(host="localhost",user="root",passwd="admin",db="consultancy")
|
||||
cur = db.cursor()
|
||||
|
||||
cur.execute("SELECT id, seed_id, check_data "
|
||||
"FROM properties ")
|
||||
propData = cur.fetchall()
|
||||
db.close()
|
||||
|
||||
return propData
|
||||
|
||||
def getDataFromDB(propId):
|
||||
'''
|
||||
Function to get data from MySQL database filter with the given propId
|
||||
|
@ -147,6 +158,7 @@ def getAccuracy(df, baseLine, compLine):
|
|||
|
||||
def getMeanAccuracy(accList):
|
||||
'''
|
||||
Get the mean Accuracy of the entire timedelay of one property
|
||||
:param accList: List of accuracy Values of a comparison
|
||||
:return: Average of the accuracy values while ignoring the '-1' values
|
||||
'''
|
||||
|
@ -155,3 +167,6 @@ def getMeanAccuracy(accList):
|
|||
row = [x for x in row if x != -1]
|
||||
out.append(np.average(row))
|
||||
return out
|
||||
|
||||
|
||||
|
||||
|
|
Binary file not shown.
|
@ -0,0 +1,58 @@
|
|||
import Data_Analysis as DA
|
||||
import pandas as pd
|
||||
|
||||
accuracy = pd.read_csv(f'results/accMeanDf.csv')
|
||||
|
||||
propData = DA.getPropertyDataFromDB()
|
||||
propData = pd.DataFrame(propData, columns =['property_id', 'region', 'geoLocation'])
|
||||
propData = propData.drop(columns=['geoLocation'])
|
||||
#print(propData)
|
||||
|
||||
merge = pd.merge(propData, accuracy, on="property_id")
|
||||
#print(merge)
|
||||
|
||||
#1 = Heidiland, 2 = Davos, 3 = Engadin 4 = St.Moritz
|
||||
|
||||
heidiAcc = merge[merge['region'] == 1]
|
||||
davosAcc = merge[merge['region'] == 2]
|
||||
EngadAcc = merge[merge['region'] == 3]
|
||||
StMorAcc = merge[merge['region'] == 4]
|
||||
|
||||
|
||||
heidiMean = heidiAcc.mean(axis=0)
|
||||
davosMean = davosAcc.mean(axis=0)
|
||||
EngadMean = EngadAcc.mean(axis=0)
|
||||
StMorMean = StMorAcc.mean(axis=0)
|
||||
|
||||
heidiSDev = heidiAcc.std(axis=0)
|
||||
davosSDev = davosAcc.std(axis=0)
|
||||
EngadSDev = EngadAcc.std(axis=0)
|
||||
StMorSDev = StMorAcc.std(axis=0)
|
||||
|
||||
|
||||
accuracyOverview = pd.DataFrame()
|
||||
|
||||
accuracyOverview.insert(0, "St. Moritz StdDev", StMorSDev, True)
|
||||
accuracyOverview.insert(0, "St. Moritz Mean", StMorMean, True)
|
||||
accuracyOverview.insert(0, "Engadin StdDev", EngadSDev, True)
|
||||
accuracyOverview.insert(0, "Engadin Mean", EngadMean, True)
|
||||
accuracyOverview.insert(0, "Davos StdDev", davosSDev, True)
|
||||
accuracyOverview.insert(0, "Davos Mean", davosMean, True)
|
||||
accuracyOverview.insert(0, "Heidi StdDev", heidiSDev, True)
|
||||
accuracyOverview.insert(0, "Heidi Mean", heidiMean, True)
|
||||
|
||||
|
||||
accuracyOverview.drop(index=accuracyOverview.index[0], axis=0, inplace=True)
|
||||
accuracyOverview.drop(index=accuracyOverview.index[0], axis=0, inplace=True)
|
||||
accuracyOverview.to_csv('results/accuracyOverview.csv', index=False)
|
||||
|
||||
#delete unused DF's
|
||||
del merge, accuracy, propData
|
||||
del heidiAcc, davosAcc, EngadAcc, StMorAcc
|
||||
del heidiMean, davosMean, EngadMean, StMorMean
|
||||
del heidiSDev, davosSDev, EngadSDev, StMorSDev
|
||||
|
||||
|
||||
print(accuracyOverview)
|
||||
|
||||
|
|
@ -0,0 +1,5 @@
|
|||
Heidi Mean,Heidi StdDev,Davos Mean,Davos StdDev,Engadin Mean,Engadin StdDev,St. Moritz Mean,St. Moritz StdDev
|
||||
0.8205301612054612,0.03521328245140846,0.8399836284786809,0.048358617863451414,0.8584327389672194,0.05319145459441233,0.8405512800767019,0.05180554811101561
|
||||
0.8066005018861457,0.06818803676300687,0.830601813557425,0.04949425409715446,0.8484564978404832,0.05396669349535696,0.8289395302705753,0.05637417919934374
|
||||
0.7368379473832369,0.06546064555588836,0.7598050837068276,0.06886580034893092,0.7667137312752639,0.06523018886732877,0.7565382226489596,0.06984023355676583
|
||||
0.6590943554763651,0.09741268862524224,0.6767196066764449,0.09656146924686429,0.670509578923442,0.07935806376665934,0.6633952429541463,0.08233444282881987
|
|
Loading…
Reference in New Issue