closes #11
parent
a3121bf58e
commit
fcd7ca34ad
|
@ -5,6 +5,7 @@ from data import etl_property_capacities_monthly as etl_pcm
|
||||||
from data import etl_property_capacities_weekdays as etl_pcw
|
from data import etl_property_capacities_weekdays as etl_pcw
|
||||||
from data import etl_property_neighbours as etl_pn
|
from data import etl_property_neighbours as etl_pn
|
||||||
from data import etl_region_capacities as etl_rc
|
from data import etl_region_capacities as etl_rc
|
||||||
|
from data import etl_region_capacities_weekdays as etl_rcw
|
||||||
from data import etl_region_movAverage as etl_rmA
|
from data import etl_region_movAverage as etl_rmA
|
||||||
from data import etl_region_properties_capacities as etl_rpc
|
from data import etl_region_properties_capacities as etl_rpc
|
||||||
from data import etl_region_capacities_comparison as etl_rcc
|
from data import etl_region_capacities_comparison as etl_rcc
|
||||||
|
@ -77,6 +78,11 @@ def region_capacities_data(id: int):
|
||||||
capacities = etl_rc.region_capacities(id)
|
capacities = etl_rc.region_capacities(id)
|
||||||
return capacities
|
return capacities
|
||||||
|
|
||||||
|
@app.get("/region/{id}/capacities/weekdays/{scrapeDate}")
|
||||||
|
def region_capacities_data(id: int, scrapeDate: str):
|
||||||
|
capacities = etl_rcw.region_capacities_weekdays(id, scrapeDate)
|
||||||
|
return capacities
|
||||||
|
|
||||||
@app.get("/region/capacities/comparison/{id_1}/{id_2}")
|
@app.get("/region/capacities/comparison/{id_1}/{id_2}")
|
||||||
def region_capacities_data(id_1: int, id_2: int):
|
def region_capacities_data(id_1: int, id_2: int):
|
||||||
capacities = etl_rcc.region_capacities_comparison(id_1, id_2)
|
capacities = etl_rcc.region_capacities_comparison(id_1, id_2)
|
||||||
|
|
|
@ -473,6 +473,22 @@ class Database:
|
||||||
extractions.created_at < '{scrape_date_max}'
|
extractions.created_at < '{scrape_date_max}'
|
||||||
""")
|
""")
|
||||||
|
|
||||||
|
def singleScrape_of_region_scrapDate(self, region_id: int, scrape_date_min: str, scrape_date_max: str):
|
||||||
|
return self.connection.sql(f"""
|
||||||
|
SELECT
|
||||||
|
JSON_EXTRACT(body, '$.content.days') as calendarBody,
|
||||||
|
extractions.created_at
|
||||||
|
FROM
|
||||||
|
consultancy_d.extractions
|
||||||
|
LEFT JOIN
|
||||||
|
consultancy_d.properties ON properties.id = extractions.property_id
|
||||||
|
WHERE
|
||||||
|
type == 'calendar' AND
|
||||||
|
properties.seed_id = {region_id} AND
|
||||||
|
extractions.created_at >= '{scrape_date_min}' AND
|
||||||
|
extractions.created_at < '{scrape_date_max}'
|
||||||
|
""")
|
||||||
|
|
||||||
def capacity_global(self):
|
def capacity_global(self):
|
||||||
return self.connection.sql(f"""
|
return self.connection.sql(f"""
|
||||||
SELECT
|
SELECT
|
||||||
|
|
|
@ -25,7 +25,7 @@ def property_capacities_weekdays(id: int, scrapeDate: str):
|
||||||
df_calendar = df_calendar.drop("dates")
|
df_calendar = df_calendar.drop("dates")
|
||||||
|
|
||||||
df_calendar = df_calendar.group_by(["weekday", "weekday_num"]).agg(pl.col("column_0").sum())
|
df_calendar = df_calendar.group_by(["weekday", "weekday_num"]).agg(pl.col("column_0").sum())
|
||||||
df_calendar = df_calendar.with_columns((pl.col("column_0") / numWeeks * 100).alias("column_0"))
|
df_calendar = df_calendar.with_columns((pl.col("column_0") / numWeeks / 2 * 100).alias("column_0"))
|
||||||
df_calendar = df_calendar.sort('weekday_num')
|
df_calendar = df_calendar.sort('weekday_num')
|
||||||
df_calendar = df_calendar.drop('weekday_num')
|
df_calendar = df_calendar.drop('weekday_num')
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,56 @@
|
||||||
|
from io import StringIO
|
||||||
|
|
||||||
|
import polars as pl
|
||||||
|
|
||||||
|
import data
|
||||||
|
|
||||||
|
from datetime import datetime, timedelta
|
||||||
|
|
||||||
|
d = data.load()
|
||||||
|
|
||||||
|
|
||||||
|
def region_capacities_weekdays(id: int, scrapeDate_start: str):
|
||||||
|
# String to Date
|
||||||
|
scrapeDate_start = datetime.strptime(scrapeDate_start, '%Y-%m-%d')
|
||||||
|
|
||||||
|
# Get end date of start search-window
|
||||||
|
scrapeDate_end = scrapeDate_start + timedelta(days=1)
|
||||||
|
|
||||||
|
extractions = d.singleScrape_of_region_scrapDate(id, scrapeDate_start, scrapeDate_end).pl()
|
||||||
|
df_calendar = pl.DataFrame()
|
||||||
|
numWeeks = 0
|
||||||
|
firstExe = True
|
||||||
|
counter = 0
|
||||||
|
for row in extractions.rows(named=True):
|
||||||
|
scrapeDate = row['created_at']
|
||||||
|
if row['calendarBody']:
|
||||||
|
counter += 1
|
||||||
|
df_calendar = pl.read_json(StringIO(row['calendarBody']))
|
||||||
|
columnTitles = df_calendar.columns
|
||||||
|
df_calendar = df_calendar.transpose()
|
||||||
|
df_calendar = df_calendar.with_columns(pl.Series(name="dates", values=columnTitles))
|
||||||
|
df_calendar = df_calendar.with_columns((pl.col("dates").str.to_date()))
|
||||||
|
numWeeks = round((df_calendar.get_column("dates").max() - df_calendar.get_column("dates").min()).days / 7, 0)
|
||||||
|
df_calendar = df_calendar.with_columns(pl.col("dates").dt.weekday().alias("weekday_num"))
|
||||||
|
df_calendar = df_calendar.with_columns(pl.col("dates").dt.strftime("%A").alias("weekday"))
|
||||||
|
df_calendar = df_calendar.drop("dates")
|
||||||
|
|
||||||
|
df_calendar = df_calendar.group_by(["weekday", "weekday_num"]).agg(pl.col("column_0").sum())
|
||||||
|
df_calendar = df_calendar.with_columns((pl.col("column_0") / numWeeks / 2 * 100).alias("column_0"))
|
||||||
|
df_calendar = df_calendar.sort('weekday_num')
|
||||||
|
df_calendar = df_calendar.drop('weekday_num')
|
||||||
|
df_calendar = df_calendar.rename({'column_0': str(counter)})
|
||||||
|
|
||||||
|
if firstExe:
|
||||||
|
outDf = df_calendar
|
||||||
|
firstExe = False
|
||||||
|
else:
|
||||||
|
outDf = outDf.join(df_calendar, on='weekday')
|
||||||
|
|
||||||
|
# Calculate horizontal Mean
|
||||||
|
means = outDf.mean_horizontal()
|
||||||
|
outDf = outDf.insert_column(1, means)
|
||||||
|
outDf = outDf[['weekday', 'mean']]
|
||||||
|
|
||||||
|
result = {"scraping-date": scrapeDate, "weekdays": outDf['weekday'].to_list(),'capacities': outDf['mean'].to_list()}
|
||||||
|
return result
|
Loading…
Reference in New Issue