from datetime import datetime, timedelta from io import StringIO import polars as pl import data from data import etl_cache d = data.load() def region_capacities_weekdays(id: int, scrapeDate_start: str): file = f"etl_region_capacities_weekdays_{id}_{scrapeDate_start}.obj" obj = etl_cache.openObj(file) if obj: return obj # String to Date scrapeDate_start = datetime.strptime(scrapeDate_start, '%Y-%m-%d') # Get end date of start search-window scrapeDate_end = scrapeDate_start + timedelta(days=1) # Get Data if id == -1: extractions = d.singleScrape_of_global_scrapDate(scrapeDate_start, scrapeDate_end).pl() else: extractions = d.singleScrape_of_region_scrapDate(id, scrapeDate_start, scrapeDate_end).pl() df_calendar = pl.DataFrame() numWeeks = 0 firstExe = True counter = 0 for row in extractions.rows(named=True): scrapeDate = row['created_at'] if row['calendarBody']: counter += 1 df_calendar = pl.read_json(StringIO(row['calendarBody'])) columnTitles = df_calendar.columns df_calendar = df_calendar.transpose() df_calendar = df_calendar.with_columns(pl.Series(name="dates", values=columnTitles)) df_calendar = df_calendar.with_columns((pl.col("dates").str.to_date())) numWeeks = round((df_calendar.get_column("dates").max() - df_calendar.get_column("dates").min()).days / 7, 0) df_calendar = df_calendar.with_columns(pl.col("dates").dt.weekday().alias("weekday_num")) df_calendar = df_calendar.with_columns(pl.col("dates").dt.strftime("%A").alias("weekday")) df_calendar = df_calendar.drop("dates") df_calendar = df_calendar.group_by(["weekday", "weekday_num"]).agg(pl.col("column_0").sum()) df_calendar = df_calendar.with_columns((pl.col("column_0") / numWeeks / 2 * 100).alias("column_0")) df_calendar = df_calendar.sort('weekday_num') df_calendar = df_calendar.drop('weekday_num') df_calendar = df_calendar.rename({'column_0': str(counter)}) if firstExe: outDf = df_calendar firstExe = False else: outDf = outDf.join(df_calendar, on='weekday') # Calculate horizontal Mean means = outDf.mean_horizontal() outDf = outDf.insert_column(1, means) outDf = outDf[['weekday', 'mean']] result = {"scraping-date": scrapeDate, "weekdays": outDf['weekday'].to_list(),'capacities': outDf['mean'].to_list()} etl_cache.saveObj(file, result) return result