import Data_Analysis as DA import pandas as pd import os propIds = DA.getuniquePropIdFromDB() for propId in propIds: name = f"dok/calendarData_prop{propId}.csv" if not os.path.exists(name): print(propId) scrapeDates, calendarData = DA.getDataFromDB(propId) if DA.checkForLostProprty(calendarData): print(f"Lost Proprty: {propId}") else: scrapeDates = DA.reformatScrapeDates(scrapeDates) HeaderDates = DA.getMinMaxDate(calendarData) data = DA.creatDataMatrix(HeaderDates, calendarData) # Transform to Dataframe for Plotly df = pd.DataFrame(data, columns=HeaderDates) df.insert(0, "ScrapeDate", scrapeDates, True) df = df.drop(index=0) # Irregulärer Abstand in den Scraping Zeiten (nur 2 Tage) df = df.drop(df.columns[[1, 2]], axis=1) df.to_csv(name, index=False)