from datetime import datetime, timedelta import json import MySQLdb #Version 2.2.4 import pandas as pd #Version 2.2.3 import plotly.express as px #Version 5.24.1 db = MySQLdb.connect(host="localhost",user="root",passwd="admin",db="consultancy") cur = db.cursor() cur.execute("SELECT JSON_EXTRACT(header, '$.Date') " "FROM extractions " "WHERE type='calendar' AND property_id = 200;") dateoutput = cur.fetchall() cur.execute("SELECT JSON_EXTRACT(body, '$.content.days') " "FROM extractions " "WHERE type='calendar' AND property_id = 200;") output = cur.fetchall() db.close() #createScrapedate Liste ytickVals = list(range(0, 30, 5)) scrapeDates = [] #print(dateoutput) for row in dateoutput: date = datetime.strptime(json.loads(row[0])[0], '%a, %d %b %Y %H:%M:%S %Z').date() str = date.strftime('%d/%m/%Y') scrapeDates.append(str) #minimales und maximales Datum ermitteln fullDateList = [] for row in output: tempJson = json.loads(row[0]).keys() for key in tempJson: #print(key) fullDateList.append(datetime.strptime(key, '%Y-%m-%d').date()) end_dt = max(fullDateList) start_dt = min(fullDateList) delta = timedelta(days=1) HeaderDates = [] while start_dt <= end_dt: HeaderDates.append(start_dt) start_dt += delta #Create data-Matrix data = [] for row in output: tempList = [-1] * len(HeaderDates) tempJson = json.loads(row[0]) for key in tempJson: date = datetime.strptime(key, '%Y-%m-%d').date() content = tempJson[key] index = [i for i, x in enumerate(HeaderDates) if x == date] tempList[index[0]] = content data.append(tempList) #Transform to Dataframe for Plotly df = pd.DataFrame(data, columns=HeaderDates) #Generate Plotly Diagramm colScale = [[0, 'rgb(0, 0, 0)'], [0.33, 'rgb(204, 16, 16)'], [0.66, 'rgb(10, 102, 15)'], [1, 'rgb(17, 184, 26)']] fig = px.imshow(df, color_continuous_scale= colScale) lines = list(range(0,30,1)) for i in lines: #fig.add_hline(y=i+0.5, line_color="white") fig.add_hline(y=i+0.5) fig.update_layout(yaxis = dict(tickfont = dict(size=50))), fig.update_layout(xaxis = dict(tickfont = dict(size=50))) fig.update_layout(xaxis_title="Verfügbarkeitsdaten Mietobjekt", yaxis_title="Scrapingvorgang") fig.update_xaxes(title_font_size=100, title_font_weight="bold") fig.update_yaxes(title_font_size=100, title_font_weight="bold") fig.update_layout(yaxis = dict(tickmode = 'array',tickvals = ytickVals, ticktext = scrapeDates)) fig.update_xaxes(title_standoff = 80) fig.update_yaxes(title_standoff = 80) fig.update_layout(xaxis={'side': 'top'}) fig.show()