import Data_Analysis as DA import pandas as pd accuracy = pd.read_csv(f'results/accMeanDf.csv') propData = DA.getPropertyDataFromDB() propData = pd.DataFrame(propData, columns =['property_id', 'region', 'geoLocation']) propData = propData.drop(columns=['geoLocation']) #print(propData) merge = pd.merge(propData, accuracy, on="property_id") #print(merge) #1 = Heidiland, 2 = Davos, 3 = Engadin 4 = St.Moritz heidiAcc = merge[merge['region'] == 1] davosAcc = merge[merge['region'] == 2] EngadAcc = merge[merge['region'] == 3] StMorAcc = merge[merge['region'] == 4] heidiMean = heidiAcc.mean(axis=0) davosMean = davosAcc.mean(axis=0) EngadMean = EngadAcc.mean(axis=0) StMorMean = StMorAcc.mean(axis=0) heidiSDev = heidiAcc.std(axis=0) davosSDev = davosAcc.std(axis=0) EngadSDev = EngadAcc.std(axis=0) StMorSDev = StMorAcc.std(axis=0) accuracyOverview = pd.DataFrame() accuracyOverview.insert(0, "St. Moritz StdDev", StMorSDev, True) accuracyOverview.insert(0, "St. Moritz Mean", StMorMean, True) accuracyOverview.insert(0, "Engadin StdDev", EngadSDev, True) accuracyOverview.insert(0, "Engadin Mean", EngadMean, True) accuracyOverview.insert(0, "Davos StdDev", davosSDev, True) accuracyOverview.insert(0, "Davos Mean", davosMean, True) accuracyOverview.insert(0, "Heidi StdDev", heidiSDev, True) accuracyOverview.insert(0, "Heidi Mean", heidiMean, True) accuracyOverview.drop(index=accuracyOverview.index[0], axis=0, inplace=True) accuracyOverview.drop(index=accuracyOverview.index[0], axis=0, inplace=True) accuracyOverview.to_csv('results/accuracyOverview.csv', index=False) #delete unused DF's del merge, accuracy, propData del heidiAcc, davosAcc, EngadAcc, StMorAcc del heidiMean, davosMean, EngadMean, StMorMean del heidiSDev, davosSDev, EngadSDev, StMorSDev print(accuracyOverview)