commented code
This commit is contained in:
parent
efe9a1afe3
commit
cafea4bab1
5
main.py
5
main.py
@ -1,7 +1,8 @@
|
||||
import sys
|
||||
from py.arguments import Arguments
|
||||
from py.modell import *
|
||||
from py.model import *
|
||||
|
||||
# CLI argument for file path necessary
|
||||
if not sys.argv[1:]:
|
||||
print("Usage: python3 main.py <path to csv>")
|
||||
sys.exit(1)
|
||||
@ -15,6 +16,7 @@ def main():
|
||||
args.set_graph(False)
|
||||
|
||||
while repeat:
|
||||
# Display settings
|
||||
print("Currently selected setting:")
|
||||
print(f"File: {args.get_file_path()}")
|
||||
print(f"Mode: {args.get_mode()}")
|
||||
@ -57,6 +59,7 @@ def main():
|
||||
|
||||
print("\n")
|
||||
|
||||
# apply model, function in py/model.py
|
||||
apply_model(load_dataframe(args.get_file_path()), features, score, args.get_information(), args.get_graph())
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -1,46 +1,59 @@
|
||||
from enum import Enum
|
||||
|
||||
# Possible modes v = vector length of (x, y) / a = absolut values, reduce spread / c = cartesian, empirical values
|
||||
class Mode(Enum):
|
||||
V = "v"
|
||||
A = "a"
|
||||
C = "c"
|
||||
|
||||
# Display pandas dataframe description, head and info
|
||||
class Information(Enum):
|
||||
DISABLED = False
|
||||
ENABLED = True
|
||||
|
||||
# Display countplot, heatmap and scatterplot graphs
|
||||
class Graph(Enum):
|
||||
DISABLED = False
|
||||
ENABLED = True
|
||||
|
||||
# Class Arguments for accepted values
|
||||
class Arguments:
|
||||
|
||||
# Constructor. Default params: "filepath", v, False, False
|
||||
def __init__(self, file_path, mode, information, graph):
|
||||
self.file_path = file_path
|
||||
self.mode = mode
|
||||
self.information = information
|
||||
self.graph = graph
|
||||
|
||||
# Filepath getter
|
||||
def get_file_path(self):
|
||||
return self.file_path
|
||||
|
||||
# Filepath setter
|
||||
def set_file_path(self, value):
|
||||
self.file_path = value
|
||||
|
||||
# Mode getter
|
||||
def get_mode(self):
|
||||
return self.mode.value
|
||||
|
||||
# Mode setter
|
||||
def set_mode(self, value):
|
||||
self.mode = Mode(value)
|
||||
|
||||
# Information getter
|
||||
def get_information(self):
|
||||
return self.information.value
|
||||
|
||||
# Information setter
|
||||
def set_information(self, value):
|
||||
self.information = Information(value)
|
||||
|
||||
# Graph getter
|
||||
def get_graph(self):
|
||||
return self.graph.value
|
||||
|
||||
# GRaph setter
|
||||
def set_graph(self, value):
|
||||
self.graph = Graph(value)
|
||||
@ -10,16 +10,17 @@ Export the dataset to "data/synthetic_shots.csv"
|
||||
---------------------------------------------------'''
|
||||
|
||||
import sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import csv
|
||||
|
||||
args = sys.argv[1:]
|
||||
|
||||
# CLI argument for amount necessary
|
||||
if not args:
|
||||
print("Usage: python3 generate_synthetic_shots.py <number of generated shots>")
|
||||
sys.exit(1)
|
||||
|
||||
# Amount to generate
|
||||
n = int(args[0])
|
||||
|
||||
# Area circle
|
||||
@ -36,15 +37,14 @@ A1 = 10.5 ** 2 * np.pi
|
||||
|
||||
possible_values = np.linspace(-10, 10, 41) # fromn -10 to 10 with step 0.5
|
||||
|
||||
xy = [(np.random.choice(possible_values), np.random.choice(possible_values)) for _ in range(n)]
|
||||
xy = [(np.random.choice(possible_values), np.random.choice(possible_values)) for _ in range(n)] # numpy generates n amounts of (x, y) coordinates
|
||||
|
||||
dataset = []
|
||||
|
||||
# Apply score to coordinate based on area comparison
|
||||
for i in xy:
|
||||
A = (i[0]**2 + i[1]**2) * np.pi
|
||||
|
||||
#print(A)
|
||||
|
||||
if A <= A10:
|
||||
dataset.append([10, i[0], i[1]])
|
||||
elif A > A10 and A <= A9:
|
||||
@ -68,6 +68,7 @@ for i in xy:
|
||||
elif A > A1:
|
||||
dataset.append([0, i[0], i[1]])
|
||||
|
||||
# Write synthetic dataset in data/synthetic_shots.csv
|
||||
with open('data/synthetic_shots.csv', 'w', newline='') as csvfile:
|
||||
fieldnames = ['points', 'x', 'y']
|
||||
writer = csv.writer(csvfile)
|
||||
|
||||
@ -14,6 +14,7 @@ np.seterr(divide='ignore', invalid='ignore')
|
||||
|
||||
FEATURES = ["points", "x", "y"]
|
||||
|
||||
# create dataframe with csv file
|
||||
def make_dataframe(transform):
|
||||
def load_dataframe(file_path):
|
||||
try:
|
||||
@ -25,20 +26,25 @@ def make_dataframe(transform):
|
||||
quit()
|
||||
return load_dataframe
|
||||
|
||||
# depending on mode, [x, y] cordinates are used as feature or length of vector (x, y) [radius] is used
|
||||
def make_features(selector):
|
||||
def select(df):
|
||||
return df
|
||||
return select(selector)
|
||||
|
||||
# Feature radius when mode = v
|
||||
def radius(df):
|
||||
df["radius"] = np.sqrt(df["x"]**2 + df["y"]**2)
|
||||
return df[["radius"]]
|
||||
|
||||
# Feature ["x", "y"] when mode = a or c
|
||||
def xy(df):
|
||||
features = ["x", "y"]
|
||||
return df[features]
|
||||
|
||||
# apply model on dataframe. Params: df = dataframe, features = function make_features, inf = True or False, graph = True or False
|
||||
def apply_model(df, features, score, inf, graph):
|
||||
|
||||
# print dataframe information
|
||||
if inf:
|
||||
print(df.describe())
|
||||
@ -57,12 +63,18 @@ def apply_model(df, features, score, inf, graph):
|
||||
plt.show()
|
||||
|
||||
y = pd.get_dummies(df['points'])
|
||||
X = features(df)
|
||||
X = features(df) # select which features to use radius or xy
|
||||
|
||||
# Split data into 60/40 (train/test)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
|
||||
|
||||
# Create a RandomForestClassifier with n_estimators=700
|
||||
random_forest = RandomForestClassifier(n_estimators=700, random_state=0)
|
||||
|
||||
# Create a DecisionTreeClassifier
|
||||
decision_tree = DecisionTreeClassifier(random_state=0)
|
||||
|
||||
# Create a KNeighborsClassifier with n_neighbors=5
|
||||
k_neighbors = KNeighborsClassifier(n_neighbors=5)
|
||||
|
||||
models = {
|
||||
@ -77,13 +89,15 @@ def apply_model(df, features, score, inf, graph):
|
||||
for name, model in models.items():
|
||||
pred = model.predict(X_test.values)
|
||||
|
||||
# calculate f1 with own function
|
||||
my_f1_macro_score = calc_f1_macro(y_test, pd.DataFrame(pred))
|
||||
print(f'My F1 score of {name} is {my_f1_macro_score}')
|
||||
|
||||
# calculate f1 with sklearn function
|
||||
f1_sklearn = f1_score(y_test.values, pred, average='macro')
|
||||
print(f'Sklearn F1 score of {name} is {f1_sklearn}')
|
||||
|
||||
score = score()
|
||||
score = score() # promt for x, y coordinates and transform score based on mode
|
||||
|
||||
label_encoder = LabelEncoder()
|
||||
df["points"] = label_encoder.fit_transform(df["points"])
|
||||
@ -104,6 +118,7 @@ def calc_f1_macro(y_true, y_pred):
|
||||
f1_scores.append(score)
|
||||
return np.mean(f1_scores)
|
||||
|
||||
# calc f1 score
|
||||
def calc_f1_score(y_true, y_pred):
|
||||
tp = np.sum(np.multiply([i==True for i in y_pred], y_true))
|
||||
tn = np.sum(np.multiply([i==False for i in y_pred], [not(j) for j in y_true]))
|
||||
@ -119,12 +134,15 @@ def calc_f1_score(y_true, y_pred):
|
||||
f1 = 0
|
||||
return f1
|
||||
|
||||
# calc precision
|
||||
def calc_precision(tp, fp):
|
||||
return tp / (tp + fp)
|
||||
|
||||
# calc recall
|
||||
def calc_recall(tp, fn):
|
||||
return tp / (tp + fn)
|
||||
|
||||
# ask for x, y value and return transformed array based on mode
|
||||
def make_score_function(transform):
|
||||
def get_score_from_cli():
|
||||
try:
|
||||
Loading…
x
Reference in New Issue
Block a user