import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import LabelEncoder # low amounts of features will result in many zero devision in tp=0 and fp=0 np.seterr(divide='ignore', invalid='ignore') FEATURES = ["points", "x", "y"] # create dataframe with csv file def make_dataframe(transform): def load_dataframe(file_path): try: colum_list = FEATURES df = pd.read_csv(file_path, usecols = colum_list).dropna() return transform(df) except FileNotFoundError as error: print(error) quit() return load_dataframe # depending on mode, [x, y] cordinates are used as feature or length of vector (x, y) [radius] is used def make_features(selector): def select(df): return df return select(selector) # Feature radius when mode = v def radius(df): df["radius"] = np.sqrt(df["x"]**2 + df["y"]**2) return df[["radius"]] # Feature ["x", "y"] when mode = a or c def xy(df): features = ["x", "y"] return df[features] # apply model on dataframe. Params: df = dataframe, features = function make_features, inf = True or False, graph = True or False def apply_model(df, features, score, inf, graph): # print dataframe information if inf: print(df.describe()) print(df.head()) print(df.head().info()) # display graphs if graph: sns.countplot(x = df["points"]) plt.show() sns.heatmap(df.corr(), annot=True, cmap='coolwarm') plt.show() sns.scatterplot(x=df['x'], y=df['y'], hue=df['points']) plt.show() y = pd.get_dummies(df['points']) X = features(df) # select which features to use radius or xy # Split data into 60/40 (train/test) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) # Create a RandomForestClassifier with n_estimators=700 random_forest = RandomForestClassifier(n_estimators=700, random_state=0) # Create a DecisionTreeClassifier decision_tree = DecisionTreeClassifier(random_state=0) # Create a KNeighborsClassifier with n_neighbors=5 k_neighbors = KNeighborsClassifier(n_neighbors=5) models = { "Random Forest Classifier": random_forest, "Decision Tree Classifier": decision_tree, "K-Neighbors": k_neighbors } for name, model in models.items(): model.fit(X_train.values, y_train.values) for name, model in models.items(): pred = model.predict(X_test.values) # calculate f1 with own function my_f1_macro_score = calc_f1_macro(y_test, pd.DataFrame(pred)) print(f'My F1 score of {name} is {my_f1_macro_score}') # calculate f1 with sklearn function f1_sklearn = f1_score(y_test.values, pred, average='macro') print(f'Sklearn F1 score of {name} is {f1_sklearn}') score = score() # promt for x, y coordinates and transform score based on mode label_encoder = LabelEncoder() df["points"] = label_encoder.fit_transform(df["points"]) for name, model in models.items(): pred = model.predict(score) points_number = pd.DataFrame(pred).idxmax(axis=1) points = label_encoder.inverse_transform(points_number)[0] print(f"{name}: {points} Punkte") input("\nPress any key to continue...\n") # calc f1 macro def calc_f1_macro(y_true, y_pred): f1_scores = [] for column in y_true: score = calc_f1_score(y_true[column].values, y_pred[column]) f1_scores.append(score) return np.mean(f1_scores) # calc f1 score def calc_f1_score(y_true, y_pred): tp = np.sum(np.multiply([i==True for i in y_pred], y_true)) tn = np.sum(np.multiply([i==False for i in y_pred], [not(j) for j in y_true])) fp = np.sum(np.multiply([i==True for i in y_pred], [not(j) for j in y_true])) fn = np.sum(np.multiply([i==False for i in y_pred], y_true)) precision = calc_precision(tp, fp) recall = calc_recall(tp, fn) if precision != 0 and recall != 0: f1 = (2 * precision * recall) / (precision + recall) else: f1 = 0 return f1 # calc precision def calc_precision(tp, fp): return tp / (tp + fp) # calc recall def calc_recall(tp, fn): return tp / (tp + fn) # ask for x, y value and return transformed array based on mode def make_score_function(transform): def get_score_from_cli(): try: x = float(input("x: ")) y = float(input("y: ")) return np.array([transform(x, y)]).reshape(1, -1) except ValueError: print("Invalid input. Please enter numeric values.") return None return get_score_from_cli