137 lines
4.1 KiB
Python
137 lines
4.1 KiB
Python
import pandas as pd
|
|
import numpy as np
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
from sklearn.metrics import f1_score
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
from sklearn.preprocessing import LabelEncoder
|
|
|
|
# low amounts of features will result in many zero devision in tp=0 and fp=0
|
|
np.seterr(divide='ignore', invalid='ignore')
|
|
|
|
FEATURES = ["points", "x", "y"]
|
|
|
|
def make_dataframe(transform):
|
|
def load_dataframe(file_path):
|
|
try:
|
|
colum_list = FEATURES
|
|
df = pd.read_csv(file_path, usecols = colum_list).dropna()
|
|
return transform(df)
|
|
except FileNotFoundError as error:
|
|
print(error)
|
|
quit()
|
|
return load_dataframe
|
|
|
|
def make_features(selector):
|
|
def select(df):
|
|
return df
|
|
return select(selector)
|
|
|
|
def radius(df):
|
|
df["radius"] = np.sqrt(df["x"]**2 + df["y"]**2)
|
|
return df[["radius"]]
|
|
|
|
def xy(df):
|
|
features = ["x", "y"]
|
|
return df[features]
|
|
|
|
def apply_model(df, features, score, inf, graph):
|
|
# print dataframe information
|
|
if inf:
|
|
print(df.describe())
|
|
print(df.head())
|
|
print(df.head().info())
|
|
|
|
# display graphs
|
|
if graph:
|
|
sns.countplot(x = df["points"])
|
|
plt.show()
|
|
|
|
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
|
|
plt.show()
|
|
|
|
sns.scatterplot(x=df['x'], y=df['y'], hue=df['points'])
|
|
plt.show()
|
|
|
|
y = pd.get_dummies(df['points'])
|
|
X = features(df)
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
|
|
|
|
random_forest = RandomForestClassifier(n_estimators=700, random_state=0)
|
|
decision_tree = DecisionTreeClassifier(random_state=0)
|
|
k_neighbors = KNeighborsClassifier(n_neighbors=5)
|
|
|
|
models = {
|
|
"Random Forest Classifier": random_forest,
|
|
"Decision Tree Classifier": decision_tree,
|
|
"K-Neighbors": k_neighbors
|
|
}
|
|
|
|
for name, model in models.items():
|
|
model.fit(X_train.values, y_train.values)
|
|
|
|
for name, model in models.items():
|
|
pred = model.predict(X_test.values)
|
|
|
|
my_f1_macro_score = calc_f1_macro(y_test, pd.DataFrame(pred))
|
|
print(f'My F1 score of {name} is {my_f1_macro_score}')
|
|
|
|
f1_sklearn = f1_score(y_test.values, pred, average='macro')
|
|
print(f'Sklearn F1 score of {name} is {f1_sklearn}')
|
|
|
|
score = score()
|
|
|
|
label_encoder = LabelEncoder()
|
|
df["points"] = label_encoder.fit_transform(df["points"])
|
|
|
|
for name, model in models.items():
|
|
pred = model.predict(score)
|
|
points_number = pd.DataFrame(pred).idxmax(axis=1)
|
|
points = label_encoder.inverse_transform(points_number)[0]
|
|
print(f"{name}: {points} Punkte")
|
|
|
|
input("\nPress any key to continue...\n")
|
|
|
|
# calc f1 macro
|
|
def calc_f1_macro(y_true, y_pred):
|
|
f1_scores = []
|
|
for column in y_true:
|
|
score = calc_f1_score(y_true[column].values, y_pred[column])
|
|
f1_scores.append(score)
|
|
return np.mean(f1_scores)
|
|
|
|
def calc_f1_score(y_true, y_pred):
|
|
tp = np.sum(np.multiply([i==True for i in y_pred], y_true))
|
|
tn = np.sum(np.multiply([i==False for i in y_pred], [not(j) for j in y_true]))
|
|
fp = np.sum(np.multiply([i==True for i in y_pred], [not(j) for j in y_true]))
|
|
fn = np.sum(np.multiply([i==False for i in y_pred], y_true))
|
|
|
|
precision = calc_precision(tp, fp)
|
|
recall = calc_recall(tp, fn)
|
|
|
|
if precision != 0 and recall != 0:
|
|
f1 = (2 * precision * recall) / (precision + recall)
|
|
else:
|
|
f1 = 0
|
|
return f1
|
|
|
|
def calc_precision(tp, fp):
|
|
return tp / (tp + fp)
|
|
|
|
def calc_recall(tp, fn):
|
|
return tp / (tp + fn)
|
|
|
|
def make_score_function(transform):
|
|
def get_score_from_cli():
|
|
try:
|
|
x = float(input("x: "))
|
|
y = float(input("y: "))
|
|
return np.array([transform(x, y)]).reshape(1, -1)
|
|
except ValueError:
|
|
print("Invalid input. Please enter numeric values.")
|
|
return None
|
|
return get_score_from_cli |