cds1011-ls2/py/absolut.py
2025-11-29 23:55:33 +01:00

82 lines
2.4 KiB
Python

from py.my_functions import *
# create dataframe from csv and drop any row with null values
def load_dataframe(file_path):
try:
colum_list = FEATURES
df = pd.read_csv(file_path, usecols = colum_list).dropna()
return df.abs()
except FileNotFoundError as error:
print(error)
quit()
def get_score_from_cli():
try:
x = float(input("x: "))
y = float(input("y: "))
return np.array([x, y]).reshape(1, -1)
except ValueError:
print("Invalid input. Please enter numeric values.")
return None
def absolut(file_path, inf, graph):
# load dataframe with argument [1]
df = load_dataframe(file_path)
# print dataframe information if argument [3] is true
if inf:
print(df.describe())
print(df.head())
print(df.head().info())
# display graphs if argument [4] is true
if graph:
sns.countplot(x = df["points"])
plt.show()
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.show()
sns.scatterplot(x=df['x'], y=df['y'], hue=df['points'])
plt.show()
features = ["x", "y"]
X = df[features]
y = pd.get_dummies(df['points'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
random_forest = RandomForestClassifier(n_estimators=700, random_state=0)
decision_tree = DecisionTreeClassifier(random_state=0)
k_neighbors = KNeighborsClassifier(n_neighbors=5)
models = {
"Random Forest Classifier": random_forest,
"Decision Tree Classifier": decision_tree,
"K-Neighbors": k_neighbors
}
for name, model in models.items():
model.fit(X_train.values, y_train.values)
for name, model in models.items():
pred = model.predict(X_test.values)
my_f1_macro_score = calc_f1_macro(y_test, pd.DataFrame(pred))
print(f'My F1 score of {name} is {my_f1_macro_score}')
f1_sklearn = f1_score(y_test.values, pred, average='macro')
print(f'Sklearn F1 score of {name} is {f1_sklearn}')
score = get_score_from_cli()
label_encoder = LabelEncoder()
df["points"] = label_encoder.fit_transform(df["points"])
for name, model in models.items():
pred = model.predict(score)
points_number = pd.DataFrame(pred).idxmax(axis=1)
points = label_encoder.inverse_transform(points_number)[0]
print(f"{name}: {points} Punkte")