88 lines
2.8 KiB
Python
88 lines
2.8 KiB
Python
import pandas as pd
|
|
import numpy as np
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
from sklearn.metrics import f1_score
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
from sklearn.preprocessing import LabelEncoder
|
|
|
|
np.seterr(divide='ignore', invalid='ignore')
|
|
|
|
FEATURES = ["points", "x", "y"]
|
|
|
|
def make_dataframe(transform):
|
|
def load_dataframe(file_path):
|
|
try:
|
|
colum_list = FEATURES
|
|
df = pd.read_csv(file_path, usecols = colum_list).dropna()
|
|
return transform(df)
|
|
except FileNotFoundError as error:
|
|
print(error)
|
|
quit()
|
|
|
|
def calc_f1_macro(y_true, y_pred):
|
|
f1_scores = []
|
|
for column in y_true:
|
|
score = calc_f1_score(y_true[column].values, y_pred[column])
|
|
f1_scores.append(score)
|
|
return np.mean(f1_scores)
|
|
|
|
def calc_f1_score(y_true, y_pred):
|
|
tp = np.sum(np.multiply([i==True for i in y_pred], y_true))
|
|
tn = np.sum(np.multiply([i==False for i in y_pred], [not(j) for j in y_true]))
|
|
fp = np.sum(np.multiply([i==True for i in y_pred], [not(j) for j in y_true]))
|
|
fn = np.sum(np.multiply([i==False for i in y_pred], y_true))
|
|
|
|
precision = calc_precision(tp, fp)
|
|
recall = calc_recall(tp, fn)
|
|
|
|
if precision != 0 and recall != 0:
|
|
f1 = (2 * precision * recall) / (precision + recall)
|
|
else:
|
|
f1 = 0
|
|
return f1
|
|
|
|
def calc_precision(tp, fp):
|
|
return tp / (tp + fp)
|
|
|
|
def calc_recall(tp, fn):
|
|
return tp / (tp + fn)
|
|
|
|
def apply_model(X, y):
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
|
|
|
|
random_forest = RandomForestClassifier(n_estimators=700, random_state=0)
|
|
decision_tree = DecisionTreeClassifier(random_state=0)
|
|
k_neighbors = KNeighborsClassifier(n_neighbors=5)
|
|
|
|
models = {
|
|
"Random Forest Classifier": random_forest,
|
|
"Decision Tree Classifier": decision_tree,
|
|
"K-Neighbors": k_neighbors
|
|
}
|
|
|
|
for name, model in models.items():
|
|
model.fit(X_train.values, y_train.values)
|
|
|
|
for name, model in models.items():
|
|
pred = model.predict(X_test.values)
|
|
|
|
my_f1_macro_score = calc_f1_macro(y_test, pd.DataFrame(pred))
|
|
print(f'My F1 score of {name} is {my_f1_macro_score}')
|
|
|
|
f1_sklearn = f1_score(y_test.values, pred, average='macro')
|
|
print(f'Sklearn F1 score of {name} is {f1_sklearn}')
|
|
|
|
def make_score_function(transform):
|
|
def get_score_from_cli():
|
|
try:
|
|
x = float(input("x: "))
|
|
y = float(input("y: "))
|
|
return np.array([transform(x, y)]).reshape(1, -1)
|
|
except ValueError:
|
|
print("Invalid input. Please enter numeric values.")
|
|
return None
|
|
return get_score_from_cli |