klassifikation ende
This commit is contained in:
parent
73b6a6b514
commit
7bf3b1e7de
@ -194,7 +194,4 @@ $$
|
|||||||
|Multiclass Classification|Multiclass Classification umfasst Datensätze mit mehreren Klassenbezeichnungen. <div><img src="bilder/binary_vs_multiclass_classification.webp" alt="Binäre vs Multiclass Classification" width="300"/> <img src="bilder/multiclass_classification.webp" alt="Multiclass Classification" width="300"/><div>|
|
|Multiclass Classification|Multiclass Classification umfasst Datensätze mit mehreren Klassenbezeichnungen. <div><img src="bilder/binary_vs_multiclass_classification.webp" alt="Binäre vs Multiclass Classification" width="300"/> <img src="bilder/multiclass_classification.webp" alt="Multiclass Classification" width="300"/><div>|
|
||||||
|One vs. The Rest|Beim One vs. Rest Klassifizierungsansatz, der auf einen Datensatz mit N unterschiedlichen Klassen zugeschnitten ist, werden N binäre Klassifikatoren generiert, die jeweils einer bestimmten Klasse entsprechen. Die Anzahl der Klassifikatoren entspricht der Anzahl der eindeutigen Klassenbezeichnungen, die im Datensatz vorhanden sind. <img src="bilder/one_vs_the_rest.webp" alt="One vs. the Rest" width="700"/>|
|
|One vs. The Rest|Beim One vs. Rest Klassifizierungsansatz, der auf einen Datensatz mit N unterschiedlichen Klassen zugeschnitten ist, werden N binäre Klassifikatoren generiert, die jeweils einer bestimmten Klasse entsprechen. Die Anzahl der Klassifikatoren entspricht der Anzahl der eindeutigen Klassenbezeichnungen, die im Datensatz vorhanden sind. <img src="bilder/one_vs_the_rest.webp" alt="One vs. the Rest" width="700"/>|
|
||||||
|One vs. One|Bei der One vs. One Klassifizierungsstrategie, die auf einen Datensatz mit N unterschiedlichen Klassen zugeschnitten ist, werden insgesamt N * (N-1) / 2 binäre Klassifikatoren generiert. Bei diesem Ansatz wird für jedes mögliche Klassenpaar ein binärer Klassifikator erstellt.<br /> <img src="bilder/one_vs_one.webp" alt="One vs. the Rest" width="700"/>|
|
|One vs. One|Bei der One vs. One Klassifizierungsstrategie, die auf einen Datensatz mit N unterschiedlichen Klassen zugeschnitten ist, werden insgesamt N * (N-1) / 2 binäre Klassifikatoren generiert. Bei diesem Ansatz wird für jedes mögliche Klassenpaar ein binärer Klassifikator erstellt.<br /> <img src="bilder/one_vs_one.webp" alt="One vs. the Rest" width="700"/>|
|
||||||
|||
|
|
||||||
|||
|
|
||||||
|||
|
|
||||||
## Unsupervised Learning Clustering
|
## Unsupervised Learning Clustering
|
||||||
Loading…
x
Reference in New Issue
Block a user