style
This commit is contained in:
parent
9277600a20
commit
867d9381aa
@ -59,9 +59,9 @@
|
||||
|Skalenniveaus||
|
||||
|Mittelwert|Summe aller Werte dividiert durch die Anzahl von Werten. $$\huge \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$|
|
||||
|Median|Mittlerer Wert der sortierten Liste. $$\huge \text{Median} = \begin{cases}x_{\left(\frac{n+1}{2}\right)}, & \text{wenn } n \text{ ungerade ist} \\ \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}, & \text{wenn } n \text{ gerade ist}\end{cases}$$|
|
||||
|Varianz|$$\displaystyle\huge Varianz = s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 }{n - 1}$$|
|
||||
|Standardabweichung|$$\displaystyle\huge Standardabbwichung = s = \sqrt{Varianz}$$|
|
||||
| Mittlere Absolute Abweichung | $$\displaystyle\huge \text{Mittlere Absolute Abweichung} = \frac{\sum_{i=1}^{n} \lvert x_i - \bar{x} \rvert}{n - 1}$$ |
|
||||
|Varianz|$$\huge Varianz = s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 }{n - 1}$$|
|
||||
|Standardabweichung|$$\huge Standardabbwichung = s = \sqrt{Varianz}$$|
|
||||
| Mittlere Absolute Abweichung | $$\huge \text{Mittlere Absolute Abweichung} = \frac{\sum_{i=1}^{n} \lvert x_i - \bar{x} \rvert}{n - 1}$$ |
|
||||
## Lineare Regression
|
||||
## Klassifikation
|
||||
## Unsupervised Learning Clustering
|
||||
Loading…
x
Reference in New Issue
Block a user