add file classification/classification_template.py updated README

This commit is contained in:
git-sandro 2025-11-20 11:45:30 +01:00
parent add94d05c7
commit a311e2b3a9
2 changed files with 112 additions and 1 deletions

View File

@ -5,4 +5,5 @@ Install this Python libraries in your virtual environment. Use (uv) pip install
* numpy * numpy
* matplotlib * matplotlib
* openpyxl * openpyxl
* scikit-learn * scikit-learn
* seaborn

View File

@ -0,0 +1,110 @@
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import LabelEncoder
FEATURES = ['Flipper Length (mm)','Body Mass (g)','Culmen Depth (mm)','Culmen Length (mm)', 'Species']
def load_dataframe():
try:
column_list = FEATURES
df = pd.read_csv("penguins.csv", usecols=column_list)
return df
except FileNotFoundError:
print("Datei 'penguins.csv' nicht gefunden.")
return None
def calc_precision(tp, fp):
print("🛠️ under construction")
def calc_recall(tp, fn):
print("🛠️ under construction")
def calc_f1_score(y_true, y_pred):
#https://stackoverflow.com/questions/64860091/computing-macro-average-f1-score-using-numpy-pythonwithout-using-scikit-learn
tp = np.sum(np.multiply([i==True for i in y_pred], y_true))
tn = np.sum(np.multiply([i==False for i in y_pred], [not(j) for j in y_true]))
fp = np.sum(np.multiply([i==True for i in y_pred], [not(j) for j in y_true]))
fn = np.sum(np.multiply([i==False for i in y_pred], y_true))
print("🛠️ under construction")
def calc_f1_macro(y_true, y_pred):
f1_scores = []
for column in y_true:
score = calc_f1_score(y_true[column].values, y_pred[column])
f1_scores.append(score)
return np.mean(f1_scores)
def get_penguin_from_cli():
try:
culmen_depth = float(input("Culmen Depth (mm): "))
culmen_length = float(input("Culmen Length (mm): "))
return np.array([culmen_depth, culmen_length]).reshape(1, -1)
except ValueError:
print("Invalid input. Please enter numeric values.")
return None
def main():
df = load_dataframe()
if df is None:
return
print("\n=== Overview ===")
print(df.describe())
print(df.head())
print(df.head().info())
print("\n=== Quality Assessment ===")
row_count = len(df)
print("Number of rows ", row_count)
print("Check for null-values ", df.isnull().sum())
print("\n=== Preprocessing ===")
# fill null-values with mean
df.fillna(df.mean(numeric_only=True), inplace=True)
# transform species column to numbers
label_encoder = LabelEncoder()
df["Species"] = label_encoder.fit_transform(df["Species"])
print("\n=== Countplot ===")
# Countplot check for the balancing of the data
sns.countplot(x=df["Species"])
plt.show()
print("\n=== Heatmap ===")
# Check correlation among other variables
sns.heatmap(df.corr(), annot=True, cmap="coolwarm")
plt.show()
print("\n=== Feature Selection ===")
features = ['Culmen Depth (mm)','Culmen Length (mm)']
y = df["Species"]
X = df[features]
y = pd.get_dummies(y)
print("\n=== Visualize Features ===")
sns.scatterplot(x=df['Culmen Length (mm)'], y=df['Culmen Depth (mm)'], hue=df['Species'])
plt.show()
print("\n=== Model Training ===")
print("🛠️ under construction")
print("\n=== Model Evaluation ===")
print("🛠️ under construction")
print("\n=== Prediction ===")
# Culmen Depth (mm) = 18, Culmen Length (mm) = 50
#wild_penguin = np.array([18, 50]).reshape(1, -1)
#wild_penguin = get_penguin_from_cli()
print("🛠️ under construction")
if __name__ == "__main__":
main()