kl
This commit is contained in:
parent
450a321f31
commit
bc922b0821
@ -191,7 +191,7 @@ $$
|
||||
|ROC-Kurve|Bewertung der Trennschärfe eines binären Klassifikators über verschiedene Schwellenwerte. <img src="bilder/roc_kurve.png" alt="ROC-Kurve" width="600"/>|
|
||||
|TPR (True Positive Rate)|Beschreibt, wie viele der tatsächlich positiven Beispiele korrekt erkannt wurden. Sie entspricht dem Recall. Eine TPR von 1.0 bedeutet: alle positiven Beispiele wurden richtig erkannt. $\large TPR = \frac{TP}{TP+FN} $|
|
||||
|FPR (False Positive Rate)|Die FPR (False Positive Rate) misst, wie viele der negativen Beispiele fälschlich als positiv klassifiziert wurden. Eine FPR von 0.2 bedeutet: 20 % der negativen Beispiele wurden falsch als positiv erkannt. $\large FPR = \frac{FP}{FP+TN} $|
|
||||
|Multiclass Classification|Multiclass Classification umfasst Datensätze mit mehreren Klassenbezeichnungen. <img src="bilder/binary_vs_multiclass_classification.webp" alt="Binäre vs Multiclass Classification" width="300"/> <img src="bilder/multiclass_classification.webp" alt="Multiclass Classification" width="300"/>|
|
||||
|Multiclass Classification|Multiclass Classification umfasst Datensätze mit mehreren Klassenbezeichnungen. <div><img src="bilder/binary_vs_multiclass_classification.webp" alt="Binäre vs Multiclass Classification" width="300"/> <img src="bilder/multiclass_classification.webp" alt="Multiclass Classification" width="300"/><div>|
|
||||
|One vs. The Rest|Beim One vs. Rest Klassifizierungsansatz, der auf einen Datensatz mit N unterschiedlichen Klassen zugeschnitten ist, werden N binäre Klassifikatoren generiert, die jeweils einer bestimmten Klasse entsprechen. Die Anzahl der Klassifikatoren entspricht der Anzahl der eindeutigen Klassenbezeichnungen, die im Datensatz vorhanden sind.|
|
||||
|||
|
||||
|||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user