cds1012/personenstromsimulation/pedestrian_sk.py
2025-12-18 16:35:44 +01:00

151 lines
5.1 KiB
Python

#!/usr/bin/python
import numpy as np
import matplotlib.pyplot as plt
GRIDSIZE_X = 35
GRIDSIZE_Y = 35
MAX_TIME = 500
NUM_PEDS = 200
CELL_PED = 1 # cell state: pedestrian
CELL_EMP = 0 # cell state: empty
CELL_OBS = -1 # cell state: obstacle
EXIT_X = GRIDSIZE_X+1 # x-coordinate of exit
EXIT_Y = int(GRIDSIZE_Y/2) # y-coordinate of exit
VIS_PAUSE = 0.2 # time [s] between two visual updates
VIS_STEPS = 2 # stride [steps] between two visual updates
# count pedestrians left in domain
def count_peds(grid):
nped = 0
for x in range(1, GRIDSIZE_X+1):
for y in range(1, GRIDSIZE_Y+1):
if grid[x,y] == CELL_PED:
nped = nped + 1
return nped
# compute average density [P/m2]
def comp_density(grid):
dens = 0
for x in range(1, GRIDSIZE_X+1):
for y in range(1, GRIDSIZE_Y+1):
if grid[x,y] == CELL_PED:
npeds = 0
for i in range(-1,2):
for j in range(-1,2):
if grid[x+i,y+j] == CELL_PED:
npeds = npeds + 1
dens = dens + (npeds/1.44)
if count_peds(grid) != 0:
return (dens/count_peds(grid))
else:
return 0
# state transition t -> t + dt
def update(old, new):
for x in range(1, GRIDSIZE_X+1):
for y in range(1, GRIDSIZE_Y+1):
#
# transition functions
#
if old[x,y] == CELL_PED:
delta_x = EXIT_X - x
delta_y = EXIT_Y - y
terrain = dict(N = {}, E = {}, S = {}, W = {})
terrain["N"]["x"], terrain["N"]["y"], terrain["N"]["cell"], terrain["N"]["vector"] = set_terrain(old, x, y+1)
terrain["E"]["x"], terrain["E"]["y"], terrain["E"]["cell"], terrain["E"]["vector"] = set_terrain(old, x+1, y)
terrain["S"]["x"], terrain["S"]["y"], terrain["S"]["cell"], terrain["S"]["vector"] = set_terrain(old, x, y-1)
terrain["W"]["x"], terrain["W"]["y"], terrain["W"]["cell"], terrain["W"]["vector"] = set_terrain(old, x-1, y)
min = np.inf
move_to = None
# Alternative move_to when optimal move_to is blocked
for key in terrain:
if terrain[key]["cell"] == CELL_EMP:
if terrain[key]["vector"] < min:
min = terrain[key]["vector"]
move_to = terrain[key]
if move_to != None:
new[move_to["x"], move_to["y"]] = CELL_PED
old[move_to["x"], move_to["y"]] = CELL_OBS
else:
new[x,y] = old[x,y]
# Stay still when optimal move_to is blocked
'''for key in terrain:
if terrain[key]["vector"] < min:
min = terrain[key]["vector"]
move_to = terrain[key]
if move_to != None and move_to["cell"] == CELL_EMP:
new[move_to["x"], move_to["y"]] = CELL_PED
old[move_to["x"], move_to["y"]] = CELL_OBS
old[x,y] = CELL_OBS
else:
new[x,y] = old[x,y]'''
def set_terrain(grid, x, y):
cell = grid[x,y]
vector = np.sqrt((EXIT_X - x)**2 + (EXIT_Y - y)**2)
return x, y, cell, vector
# allocate memory and initialise grids
old = np.zeros((GRIDSIZE_X+2, GRIDSIZE_Y+2), dtype=np.int32)
new = np.zeros((GRIDSIZE_X+2, GRIDSIZE_Y+2), dtype=np.int32)
old[:,0] = CELL_OBS # boundary: south
old[:,-1] = CELL_OBS # boundary: north
old[0,:] = CELL_OBS # boundary: west
old[-1,:] = CELL_OBS # boundary: east
old[EXIT_X,EXIT_Y-1] = CELL_EMP # exit
old[EXIT_X,EXIT_Y] = CELL_EMP # exit
old[EXIT_X,EXIT_Y+1] = CELL_EMP # exit
new = old.copy()
# set random starting points for pedestrians
for i in range(NUM_PEDS):
while True:
x = int(float(GRIDSIZE_X)*np.random.random())+1
y = int(float(GRIDSIZE_Y)*np.random.random())+1
if old[x,y] == CELL_EMP:
old[x,y] = CELL_PED
break
# run updates
time = 0
dens = []
plt.ion()
plt.imshow(np.rot90(old, 1))
plt.pause(VIS_PAUSE)
while count_peds(old) > 0 and time < MAX_TIME:
new[1:GRIDSIZE_X+1,1:GRIDSIZE_Y+1] = CELL_EMP
update(old, new)
new[EXIT_X,EXIT_Y-1] = CELL_EMP # clear exit
new[EXIT_X,EXIT_Y] = CELL_EMP # clear exit
new[EXIT_X,EXIT_Y+1] = CELL_EMP # clear exit
old = new.copy()
numpeds = count_peds(old)
dens.append(comp_density(old))
time = time + 1
if time%VIS_STEPS == 0:
plt.clf()
plt.imshow(np.rot90(old, 1))
plt.pause(VIS_PAUSE)
plt.ioff()
print(f'Evacuation of {NUM_PEDS} persons done in {time*0.3:.2f} seconds')
# plot density diagramm
x = np.linspace(0,time*.3,time)
plt.clf()
plt.xlabel('Zeit [s]')
plt.ylabel('Dichte [P/m2]')
plt.plot(x, dens, 'r-')
plt.show()