add oed
This commit is contained in:
parent
2e99b48a76
commit
7910902fb6
@ -52,7 +52,54 @@ fill: (x, y) => if y == 0 {gray.lighten(40%)},
|
|||||||
)
|
)
|
||||||
|
|
||||||
=== Visualisierung
|
=== Visualisierung
|
||||||
Richtungsvektorfeld: \
|
#grid(columns: (0.7fr, 1fr), gutter: 10pt, [
|
||||||
|
==== Richtungsvektorfeld: \
|
||||||
#box(stroke: 1pt + red, inset: (x: 1em, y: 1em), [$accent(v, hat)(x;y) :eq frac(1, root(,1 + f^2(x;y))) dot mat(delim: "[", 1; f(x;y))$])
|
#box(stroke: 1pt + red, inset: (x: 1em, y: 1em), [$accent(v, hat)(x;y) :eq frac(1, root(,1 + f^2(x;y))) dot mat(delim: "[", 1; f(x;y))$])
|
||||||
|
#line(length: 90%)
|
||||||
|
*Stabilitätseigenschaften*
|
||||||
|
- Gobaler Attraktor: $arrow$ stabil
|
||||||
|
- Gobaler Repellor: $arrow$ labil
|
||||||
|
- Gobaler Seminator: $arrow$ labil
|
||||||
|
*Stabilitätseigenschaften*
|
||||||
|
], [
|
||||||
|
==== Stabilitätseigenschaften
|
||||||
|
#image("../img/analysis_3/Stabilitätseigenschaften.png", width: 100%)
|
||||||
|
])
|
||||||
|
|
||||||
|
=== Separation
|
||||||
|
==== Statische lösung
|
||||||
|
Möchte man z.b. für $y^' eq 3x^2y plus x^2$ die Statische Lösung so muss man $y^'$ mit 0 ersetzen so das gilt:
|
||||||
|
#grid(columns: (1fr, 1fr), gutter: 10pt, [
|
||||||
|
$ 0 eq 3x^2y plus x^2 $
|
||||||
|
$ 0 eq x^2 dot (3y plus 1) $
|
||||||
|
$ 0 eq 3y plus 1 $
|
||||||
|
$ -1 eq 3y $
|
||||||
|
$ minus frac(1, 3) eq y $
|
||||||
|
$ y(x) eq minus frac(1, 3) $
|
||||||
|
], [
|
||||||
|
Da $x^2$ einen belibigen Wert haben kann kann es ausgeschlossen werden da logischerweise der rest also $0 eq 3y plus 1$ sein muss.
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
==== Nicht Statische lösung
|
||||||
|
#grid(columns: (1fr, 1fr), gutter: 10pt, [
|
||||||
|
$ y^' eq x^2 dot y $
|
||||||
|
$ frac(1, y) dot y^' eq x^2 $
|
||||||
|
$ integral frac(1, y) dot y^' dot "dx" eq integral x^2 dot "dx" $
|
||||||
|
$ integral frac(1, y) dot "dy" eq integral x^2 dot "dx" $
|
||||||
|
$ ln(abs(y)) eq frac(1, 3) dot x^3 + c $
|
||||||
|
$ abs(y) eq e^(frac(1, 3) dot x^3 + c) eq e^c dot e^(frac(1, 3) dot x^3) $
|
||||||
|
$ y(x) eq plus.minus e^c dot e^(frac(1, 3) dot x^3) eq C dot e^(frac(1, 3) dot x^3) "mit" C in RR \\ {0} $
|
||||||
|
], [
|
||||||
|
- $y^' eq frac("dy", "dx")$
|
||||||
|
- $integral frac(1, y) dot "dy" eq ln(abs(y))$
|
||||||
|
|
||||||
|
])
|
||||||
|
|
||||||
|
#table(columns: (0.5fr, 1fr),
|
||||||
|
[$C_1$, $C_2$], [Entsthun beim Integrieren],
|
||||||
|
[$c$], [$c eq C_2 - C_1$],
|
||||||
|
[$C$], [$C eq -c$],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user