Leistungsnachweis-2/svm_modell.py

196 lines
7.4 KiB
Python

# Machine Learning Modell 1 / Leistungsnachweis II Data Science / 1. Semester
# Support Vector Machine zu binären Klassifikation
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.impute import SimpleImputer
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')
def load_and_preprocess_data():
activities = pd.read_csv("Activities_rohdaten.csv", sep=None, engine="python")
df = activities.copy()
df.columns = df.columns.str.strip()
# Kategorisieren der Sportklassen
def classify_activity(x):
x = str(x).lower()
if 'cardio' in x or 'gehen' in x or 'multisport' in x:
return -1
if 'kraft' in x:
return 0
if ('rad' in x or 'bike' in x or 'cycling' in x or 'velo' in x or 'schwimm' in x or 'laufen' in x or 'run' in x):
return 1
return -1
df['sport_category'] = df['Aktivitätstyp'].apply(classify_activity)
df = df[df['sport_category'] != -1]
# Numerische Daten welche miteinbezogen werden
numeric_features = ['Distanz', 'Kalorien', 'Ø Herzfrequenz', 'Maximale Herzfrequenz', 'Aerober TE', 'Training Stress Score®']
available_features = [col for col in numeric_features if col in df.columns]
return df, available_features
def feature_engineering(df, features):
# Kopie erstellen
df_processed = df.copy()
# Numerische Features bereinigen
for feature in features:
if df_processed[feature].dtype == 'object':
df_processed[feature] = df_processed[feature].astype(str).str.replace(',', '')
# In numerische Werte umwandeln
df_processed[feature] = pd.to_numeric(df_processed[feature], errors='coerce')
# Zeitbasierte Features aus Datum extrahieren
if 'Datum' in df_processed.columns:
df_processed['Datum'] = pd.to_datetime(df_processed['Datum'], errors='coerce')
df_processed['hour'] = df_processed['Datum'].dt.hour
df_processed['day_of_week'] = df_processed['Datum'].dt.dayofweek
df_processed['month'] = df_processed['Datum'].dt.month
# Zeitbasierte Features hinzufügen
time_features = ['hour', 'day_of_week', 'month']
features.extend(time_features)
# Fehlende Werte behandeln
X = df_processed[features]
y = df_processed['sport_category']
# SimpleImputer für fehlende Werte
imputer = SimpleImputer(strategy='median')
X_imputed = imputer.fit_transform(X)
return X_imputed, y, features, imputer
def train_svm_model(X, y): # Trainiert das SVM-Modell mit Hyperparameter-Tuning
# Daten in Trainings- und Testsets aufteilen
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)
# Features skalieren
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# SVM-Modell mit Hyperparameter-Tuning
param_grid = {
'C': [0.1, 1, 10, 100],
'gamma': ['scale', 'auto', 0.001, 0.01, 0.1, 1],
'kernel': ['rbf', 'linear']
}
svm = SVC(random_state=42)
grid_search = GridSearchCV(svm, param_grid, cv=5, scoring='accuracy', n_jobs=-1)
grid_search.fit(X_train_scaled, y_train)
# Bestes Modell
best_svm = grid_search.best_estimator_
# Vorhersagen
y_pred = best_svm.predict(X_test_scaled)
# Kreuzvalidierung
cv_scores = cross_val_score(best_svm, X_train_scaled, y_train, cv=5)
return best_svm, X_test_scaled, y_test, y_pred, grid_search.best_params_, cv_scores, scaler
def evaluate_model(y_test, y_pred, cv_scores, best_params): # Evaluiert das Modell und gibt Ergebnisse aus
print("=== SVM-Modell für Sportarten-Klassifikation ===")
print(f"Anzahl der Datensätze: {len(y_test) + len(y_pred)}")
print(f"\nBeste Hyperparameter: {best_params}")
print(f"\nKreuzvalidierung (CV-Scores): {cv_scores}")
print(f"Mittlere CV-Genauigkeit: {cv_scores.mean():.4f} (+/- {cv_scores.std() * 2:.4f})")
print(f"\nTest-Genauigkeit: {accuracy_score(y_test, y_pred):.4f}")
print("\nKlassifikationsbericht:")
print(classification_report(y_test, y_pred, target_names=['Kraftsport', 'Ausdauersport']))
print("\nKonfusionsmatrix:")
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Visualisierung der Konfusionsmatrix
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=['Kraftsport', 'Ausdauersport'],
yticklabels=['Kraftsport', 'Ausdauersport'])
plt.title('Konfusionsmatrix - SVM Sportarten-Klassifikation')
plt.ylabel('Wahre Klasse')
plt.xlabel('Vorhergesagte Klasse')
plt.tight_layout()
plt.savefig('confusion_matrix.png', dpi=300, bbox_inches='tight')
plt.show()
return accuracy_score(y_test, y_pred)
def feature_importance_analysis(model, X_test, feature_names): # Analysiert die Wichtigkeit der Features (für lineare SVM)
if model.kernel == 'linear':
importance = np.abs(model.coef_[0]) # Feature-Wichtigkeit für lineare SVM
feature_importance = pd.DataFrame({'feature': feature_names, 'importance': importance}).sort_values('importance', ascending=False)
print("\nFeature-Wichtigkeit (lineare SVM):")
print(feature_importance)
plt.figure(figsize=(10, 6))
sns.barplot(data=feature_importance.head(10), x='importance', y='feature')
plt.title('Top 10 Feature-Wichtigkeiten')
plt.xlabel('Wichtigkeit')
plt.tight_layout()
plt.savefig('feature_importance.png', dpi=300, bbox_inches='tight')
plt.show()
else:
print("\nFeature-Wichtigkeit nur für lineare SVM verfügbar")
def main():
print("Starte SVM-Modell für Sportarten-Klassifikation...")
try:
# Daten laden und vorverarbeiten
df, features = load_and_preprocess_data()
print(f"Daten geladen: {df.shape[0]} Datensätze, {len(features)} Features")
print(f"Verteilung der Sportarten: {df['sport_category'].value_counts().to_dict()}")
# Feature Engineering
X, y, feature_names, imputer = feature_engineering(df, features)
print(f"Feature Engineering abgeschlossen: {X.shape[1]} Features")
# SVM-Modell trainieren
model, X_test, y_test, y_pred, best_params, cv_scores, scaler = train_svm_model(X, y)
# Modell evaluieren
accuracy = evaluate_model(y_test, y_pred, cv_scores, best_params)
# Feature-Analyse
feature_importance_analysis(model, X_test, feature_names)
print(f"\nModell erfolgreich trainiert mit Genauigkeit: {accuracy:.4f}")
print("\nGespicherte Dateien: confusion_matrix.png, feature_importance.png")
return model, scaler, imputer, feature_names
except Exception as e:
print(f"Fehler bei der Ausführung: {str(e)}")
return None, None, None, None
if __name__ == "__main__":
model, scaler, imputer, feature_names = main()