93 lines
2.8 KiB
R
93 lines
2.8 KiB
R
rm(list=ls())
|
|
#######get required libraries#######
|
|
library(ggplot2)
|
|
library(dplyr)
|
|
library(tidyverse)
|
|
library(RSwissMaps)
|
|
library(viridis)
|
|
|
|
#######set working direction and get the data
|
|
setwd("~/BAK_Projekt")
|
|
|
|
#base
|
|
mapCH <- mapCH2016 %>% dplyr::rename("bfs_nr"="can")
|
|
|
|
#create dataset on canton level
|
|
df_bak <- read.csv("~/BAK_Projekt/Liste_BAK2.csv", sep = ";")
|
|
|
|
df_bak_red <- df_bak %>%
|
|
dplyr::group_by(Kanton) %>%
|
|
dplyr::summarise(count=n())
|
|
df_bak_red <- df_bak_red[!(df_bak_red$Kanton ==""),]
|
|
df_bak_red$Kt <- c("AG", "AI", "AR", "BL", "BS", "BE", "FR", "GE", "GL", "GR", "JU", "LU", "NE",
|
|
"NW", "OW", "SH", "SZ", "SO", "SG", "TI", "TG", "UR", "VD", "VS", "ZG", "ZH")
|
|
df_bak_red$bfs_nr <- as.integer(c("19", "16", "15", "13", "12", "2", "10", "25", "8", "18", "26", "3", "24",
|
|
"7", "6", "14", "5", "11", "17", "21", "20", "4", "22", "23", "9", "1"))
|
|
|
|
#get coordinates (required reference system CH1903/LV03)
|
|
mapCH.short <- mapCH[!duplicated(mapCH$bfs_nr),]
|
|
df.map <- full_join(df_bak_red, mapCH.short, by="bfs_nr") %>%
|
|
select("bfs_nr", "Kt", "name", "count", "bfs_nr", "long", "lat")
|
|
|
|
|
|
|
|
# Plotting sample data
|
|
can.plot(df.map$bfs_nr, df.map$count, 2016,
|
|
boundaries = "c", boundaries_size = 0.2, boundaries_color = "white",
|
|
title = "Verteilung der Institutionen auf Kantonsebene")
|
|
#geom_text(aes(x=df.map$long, y=df.map$lat ,label = df.map$Kt))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
####Example for district map -> can be deleted
|
|
# Generating sample data:
|
|
dt.dis <- dis.template(2016)
|
|
for(i in 1:nrow(dt.dis)){dt.dis$values[i] <- sample(c(300:700), 1)/1000}
|
|
# Plotting sample data:
|
|
dis.plot(dt.dis$bfs_nr, dt.dis$values, 2016,
|
|
boundaries = "c",
|
|
title = "Beispiel auf Bezirksebene (random data)")
|
|
# Plotting sample data for the canton of Aargau:
|
|
dis.plot(dt.dis$bfs_nr, dt.dis$values, 2016, cantons = c("GR"),
|
|
lakes = c("none"),
|
|
title = "Beispiel Kanton Graubünden (Bezirksebene)")
|
|
|
|
|
|
|
|
|
|
|
|
#Example Dataset
|
|
library(scatterpie)
|
|
table7 <- table7 %>% dplyr::rename("name"="Kanton")
|
|
table7 <- table7[!(table7$name ==""),]
|
|
test <- full_join(df.map, table7, by="name")
|
|
test$radius <- 6*abs(rnorm(nrow(test)))
|
|
|
|
p <- can.plot(df.map$bfs_nr, df.map$count, 2016,
|
|
boundaries = "c", boundaries_size = 0.2, boundaries_color = "white",
|
|
title = "Verteilung der Institutionen auf Kantonsebene") +
|
|
coord_quickmap()
|
|
|
|
p + geom_scatterpie(aes(x=long, y=lat, group=bfs_nr, r=radius),
|
|
data=test, cols=c(11:13), color=NA, alpha=.8)
|
|
|
|
geom_scatterpie_legend(test$radius, x=-160, y=-55)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test %>%
|
|
select(c(11:13)) %>%
|
|
pivot_longer(cols = names(.)) %>%
|
|
ggplot(aes(x = value, y = 1, fill = name)) +
|
|
geom_col(position = "stack") +
|
|
coord_polar() +
|
|
theme_void()
|
|
|