2016-09-27 23:31:21 +02:00
{
"cells": [
{
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2021-10-15 11:18:08 +02:00
"**Chapter 6 – Ensemble Learning and Random Forests**"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2021-10-15 11:18:08 +02:00
"_This notebook contains all the sample code and solutions to the exercises in chapter 6._"
2016-09-27 23:31:21 +02:00
]
},
2019-11-05 15:26:52 +01:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
2021-05-25 21:40:58 +02:00
" <a href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/07_ensemble_learning_and_random_forests.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n",
2019-11-05 15:26:52 +01:00
" </td>\n",
2021-05-25 04:47:05 +02:00
" <td>\n",
2021-05-25 20:15:57 +02:00
" <a target=\"_blank\" href=\"https://kaggle.com/kernels/welcome?src=https://github.com/ageron/handson-ml2/blob/add-kaggle-badge/07_ensemble_learning_and_random_forests.ipynb\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" /></a>\n",
2021-05-25 04:47:05 +02:00
" </td>\n",
2019-11-05 15:26:52 +01:00
"</table>"
]
},
2016-09-27 23:31:21 +02:00
{
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2021-10-15 10:46:27 +02:00
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures."
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
"execution_count": 1,
2018-05-08 12:43:49 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2021-10-15 10:46:27 +02:00
"# Python ≥3.7 is required\n",
2019-01-16 16:42:00 +01:00
"import sys\n",
2021-10-15 10:46:27 +02:00
"assert sys.version_info >= (3, 7)\n",
2016-09-27 23:31:21 +02:00
"\n",
2021-10-15 10:46:27 +02:00
"# Scikit-Learn ≥1.0 is required\n",
2019-01-21 11:13:10 +01:00
"import sklearn\n",
2021-10-15 10:46:27 +02:00
"assert sklearn.__version__ >= \"1.0\"\n",
2019-01-21 11:13:10 +01:00
"\n",
2016-09-27 23:31:21 +02:00
"# Common imports\n",
"import numpy as np\n",
2021-10-15 10:46:27 +02:00
"from pathlib import Path\n",
2016-09-27 23:31:21 +02:00
"\n",
"# to make this notebook's output stable across runs\n",
2017-06-06 16:32:08 +02:00
"np.random.seed(42)\n",
2016-09-27 23:31:21 +02:00
"\n",
"# To plot pretty figures\n",
"%matplotlib inline\n",
2019-01-16 16:42:00 +01:00
"import matplotlib as mpl\n",
2016-09-27 23:31:21 +02:00
"import matplotlib.pyplot as plt\n",
2019-01-16 16:42:00 +01:00
"mpl.rc('axes', labelsize=14)\n",
"mpl.rc('xtick', labelsize=12)\n",
"mpl.rc('ytick', labelsize=12)\n",
2016-09-27 23:31:21 +02:00
"\n",
"# Where to save the figures\n",
2021-10-15 10:46:27 +02:00
"IMAGES_PATH = Path() / \"images\" / \"ensembles\"\n",
"IMAGES_PATH.mkdir(parents=True, exist_ok=True)\n",
2016-09-27 23:31:21 +02:00
"\n",
2019-01-21 11:13:10 +01:00
"def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n",
2021-10-15 10:46:27 +02:00
" path = IMAGES_PATH / f\"{fig_id}.{fig_extension}\"\n",
2016-09-27 23:31:21 +02:00
" if tight_layout:\n",
" plt.tight_layout()\n",
2019-01-21 11:13:10 +01:00
" plt.savefig(path, format=fig_extension, dpi=resolution)"
2019-01-18 16:08:37 +01:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2021-10-03 12:05:49 +02:00
"# Voting Classifiers"
2019-01-18 16:08:37 +01:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 2,
2019-01-18 16:08:37 +01:00
"metadata": {},
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
"heads_proba = 0.51\n",
2017-06-06 16:32:08 +02:00
"coin_tosses = (np.random.rand(10000, 10) < heads_proba).astype(np.int32)\n",
2016-09-27 23:31:21 +02:00
"cumulative_heads_ratio = np.cumsum(coin_tosses, axis=0) / np.arange(1, 10001).reshape(-1, 1)"
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Code to generate Figure 7– 3. The law of large numbers:**"
]
},
2016-09-27 23:31:21 +02:00
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 3,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
"plt.figure(figsize=(8,3.5))\n",
"plt.plot(cumulative_heads_ratio)\n",
"plt.plot([0, 10000], [0.51, 0.51], \"k--\", linewidth=2, label=\"51%\")\n",
"plt.plot([0, 10000], [0.5, 0.5], \"k-\", label=\"50%\")\n",
"plt.xlabel(\"Number of coin tosses\")\n",
"plt.ylabel(\"Heads ratio\")\n",
"plt.legend(loc=\"lower right\")\n",
"plt.axis([0, 10000, 0.42, 0.58])\n",
"save_fig(\"law_of_large_numbers_plot\")\n",
"plt.show()"
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's use the moons dataset:"
]
},
2016-09-27 23:31:21 +02:00
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 4,
2018-05-08 12:43:49 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2016-11-05 14:25:56 +01:00
"from sklearn.model_selection import train_test_split\n",
2016-09-27 23:31:21 +02:00
"from sklearn.datasets import make_moons\n",
"\n",
"X, y = make_moons(n_samples=500, noise=0.30, random_state=42)\n",
2017-06-02 10:57:06 +02:00
"X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)"
]
},
2018-12-21 03:18:31 +01:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
2019-01-18 16:08:37 +01:00
"**Note**: to be future-proof, we set `solver=\"lbfgs\"`, `n_estimators=100`, and `gamma=\"scale\"` since these will be the default values in upcoming Scikit-Learn versions."
2018-12-21 03:18:31 +01:00
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Code examples:**"
]
},
2017-06-02 10:57:06 +02:00
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 5,
2017-09-15 16:41:15 +02:00
"metadata": {},
2017-06-02 10:57:06 +02:00
"outputs": [],
"source": [
2016-09-27 23:31:21 +02:00
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.ensemble import VotingClassifier\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.svm import SVC\n",
"\n",
2019-01-18 16:08:37 +01:00
"log_clf = LogisticRegression(solver=\"lbfgs\", random_state=42)\n",
"rnd_clf = RandomForestClassifier(n_estimators=100, random_state=42)\n",
"svm_clf = SVC(gamma=\"scale\", random_state=42)\n",
2016-09-27 23:31:21 +02:00
"\n",
"voting_clf = VotingClassifier(\n",
2017-06-02 10:57:06 +02:00
" estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],\n",
2018-05-08 12:43:49 +02:00
" voting='hard')"
2017-06-02 10:57:06 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 6,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2018-05-08 12:43:49 +02:00
"source": [
"voting_clf.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 7,
2018-05-08 12:43:49 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2017-06-02 10:57:06 +02:00
"source": [
"from sklearn.metrics import accuracy_score\n",
2016-09-27 23:31:21 +02:00
"\n",
2017-06-02 10:57:06 +02:00
"for clf in (log_clf, rnd_clf, svm_clf, voting_clf):\n",
" clf.fit(X_train, y_train)\n",
" y_pred = clf.predict(X_test)\n",
" print(clf.__class__.__name__, accuracy_score(y_test, y_pred))"
]
},
2021-02-14 03:02:09 +01:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: the results in this notebook may differ slightly from the book, as Scikit-Learn algorithms sometimes get tweaked."
]
},
2019-01-18 16:08:37 +01:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Soft voting:"
]
},
2017-06-02 10:57:06 +02:00
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 8,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2017-06-02 10:57:06 +02:00
"source": [
2019-01-18 16:08:37 +01:00
"log_clf = LogisticRegression(solver=\"lbfgs\", random_state=42)\n",
"rnd_clf = RandomForestClassifier(n_estimators=100, random_state=42)\n",
"svm_clf = SVC(gamma=\"scale\", probability=True, random_state=42)\n",
2017-06-02 10:57:06 +02:00
"\n",
"voting_clf = VotingClassifier(\n",
" estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],\n",
" voting='soft')\n",
"voting_clf.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 9,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2017-06-02 10:57:06 +02:00
"source": [
2016-09-27 23:31:21 +02:00
"from sklearn.metrics import accuracy_score\n",
"\n",
"for clf in (log_clf, rnd_clf, svm_clf, voting_clf):\n",
" clf.fit(X_train, y_train)\n",
" y_pred = clf.predict(X_test)\n",
" print(clf.__class__.__name__, accuracy_score(y_test, y_pred))"
]
},
{
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"# Bagging and Pasting\n",
"## Bagging and Pasting in Scikit-Learn"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 10,
2018-05-08 12:43:49 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
"from sklearn.ensemble import BaggingClassifier\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"\n",
"bag_clf = BaggingClassifier(\n",
2021-03-04 03:17:19 +01:00
" DecisionTreeClassifier(), n_estimators=500,\n",
2019-01-18 16:08:37 +01:00
" max_samples=100, bootstrap=True, random_state=42)\n",
2016-09-27 23:31:21 +02:00
"bag_clf.fit(X_train, y_train)\n",
2017-06-02 10:57:06 +02:00
"y_pred = bag_clf.predict(X_test)"
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 11,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2017-06-02 10:57:06 +02:00
"source": [
"from sklearn.metrics import accuracy_score\n",
2016-09-27 23:31:21 +02:00
"print(accuracy_score(y_test, y_pred))"
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 12,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
"tree_clf = DecisionTreeClassifier(random_state=42)\n",
"tree_clf.fit(X_train, y_train)\n",
"y_pred_tree = tree_clf.predict(X_test)\n",
"print(accuracy_score(y_test, y_pred_tree))"
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Code to generate Figure 7– 5. A single Decision Tree (left) versus a bagging ensemble of 500 trees (right):**"
]
},
2016-09-27 23:31:21 +02:00
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 13,
2018-05-08 12:43:49 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
"from matplotlib.colors import ListedColormap\n",
"\n",
2019-10-13 10:58:36 +02:00
"def plot_decision_boundary(clf, X, y, axes=[-1.5, 2.45, -1, 1.5], alpha=0.5, contour=True):\n",
2016-09-27 23:31:21 +02:00
" x1s = np.linspace(axes[0], axes[1], 100)\n",
" x2s = np.linspace(axes[2], axes[3], 100)\n",
" x1, x2 = np.meshgrid(x1s, x2s)\n",
" X_new = np.c_[x1.ravel(), x2.ravel()]\n",
" y_pred = clf.predict(X_new).reshape(x1.shape)\n",
" custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0'])\n",
2018-05-08 12:43:49 +02:00
" plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap)\n",
2016-09-27 23:31:21 +02:00
" if contour:\n",
" custom_cmap2 = ListedColormap(['#7d7d58','#4c4c7f','#507d50'])\n",
" plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8)\n",
" plt.plot(X[:, 0][y==0], X[:, 1][y==0], \"yo\", alpha=alpha)\n",
" plt.plot(X[:, 0][y==1], X[:, 1][y==1], \"bs\", alpha=alpha)\n",
" plt.axis(axes)\n",
" plt.xlabel(r\"$x_1$\", fontsize=18)\n",
" plt.ylabel(r\"$x_2$\", fontsize=18, rotation=0)"
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 14,
2021-10-03 12:05:49 +02:00
"metadata": {
"scrolled": true
},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2019-10-13 10:58:36 +02:00
"fix, axes = plt.subplots(ncols=2, figsize=(10,4), sharey=True)\n",
"plt.sca(axes[0])\n",
2016-09-27 23:31:21 +02:00
"plot_decision_boundary(tree_clf, X, y)\n",
"plt.title(\"Decision Tree\", fontsize=14)\n",
2019-10-13 10:58:36 +02:00
"plt.sca(axes[1])\n",
2016-09-27 23:31:21 +02:00
"plot_decision_boundary(bag_clf, X, y)\n",
"plt.title(\"Decision Trees with Bagging\", fontsize=14)\n",
2019-10-13 10:58:36 +02:00
"plt.ylabel(\"\")\n",
2016-09-27 23:31:21 +02:00
"save_fig(\"decision_tree_without_and_with_bagging_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"## Out-of-Bag evaluation"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 15,
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
"bag_clf = BaggingClassifier(\n",
2021-10-03 12:05:49 +02:00
" DecisionTreeClassifier(), n_estimators=500,\n",
" bootstrap=True, oob_score=True, random_state=40)\n",
"bag_clf.fit(X_train, y_train)\n",
"bag_clf.oob_score_"
2017-06-02 10:57:06 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 16,
2017-09-15 16:41:15 +02:00
"metadata": {},
2017-06-02 10:57:06 +02:00
"outputs": [],
"source": [
2021-10-03 12:05:49 +02:00
"bag_clf.oob_decision_function_"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 17,
2021-10-03 12:05:49 +02:00
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"from sklearn.metrics import accuracy_score\n",
"y_pred = bag_clf.predict(X_test)\n",
"accuracy_score(y_test, y_pred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Random Forests"
]
},
{
"cell_type": "code",
"execution_count": 18,
2018-05-08 12:43:49 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
"from sklearn.ensemble import RandomForestClassifier\n",
"\n",
2019-01-18 16:08:37 +01:00
"rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, random_state=42)\n",
2016-09-27 23:31:21 +02:00
"rnd_clf.fit(X_train, y_train)\n",
"\n",
"y_pred_rf = rnd_clf.predict(X_test)"
]
},
{
2021-10-03 12:05:49 +02:00
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"A Random Forest is equivalent to a bag of decision trees:"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 19,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"bag_clf = BaggingClassifier(\n",
" DecisionTreeClassifier(max_features=\"sqrt\", max_leaf_nodes=16),\n",
" n_estimators=500, random_state=42)"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 20,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"bag_clf.fit(X_train, y_train)\n",
"y_pred = bag_clf.predict(X_test)"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 21,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"np.sum(y_pred == y_pred_rf) / len(y_pred) # very similar predictions"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"## Feature Importance"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 22,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"from sklearn.datasets import load_iris\n",
"iris = load_iris()\n",
"rnd_clf = RandomForestClassifier(n_estimators=500, random_state=42)\n",
"rnd_clf.fit(iris[\"data\"], iris[\"target\"])\n",
"for name, score in zip(iris[\"feature_names\"], rnd_clf.feature_importances_):\n",
" print(name, score)"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 23,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"rnd_clf.feature_importances_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following figure overlays the decision boundaries of 15 decision trees. As you can see, even though each decision tree is imperfect, the ensemble defines a pretty good decision boundary:"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 24,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"plt.figure(figsize=(6, 4))\n",
"\n",
"for i in range(15):\n",
" tree_clf = DecisionTreeClassifier(max_leaf_nodes=16, random_state=42 + i)\n",
" indices_with_replacement = np.random.randint(0, len(X_train), len(X_train))\n",
2021-10-06 08:13:44 +02:00
" tree_clf.fit(X_train[indices_with_replacement], y_train[indices_with_replacement])\n",
2021-10-03 12:05:49 +02:00
" plot_decision_boundary(tree_clf, X, y, axes=[-1.5, 2.45, -1, 1.5], alpha=0.02, contour=False)\n",
"\n",
"plt.show()"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"**Code to generate Figure 7– 6. MNIST pixel importance (according to a Random Forest classifier):**"
2016-09-27 23:31:21 +02:00
]
},
2021-03-01 21:29:06 +01:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Warning:** since Scikit-Learn 0.24, `fetch_openml()` returns a Pandas `DataFrame` by default. To avoid this and keep the same code as in the book, we use `as_frame=False`."
]
},
2017-04-07 21:33:53 +02:00
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 25,
2018-05-08 12:43:49 +02:00
"metadata": {},
2017-04-07 21:33:53 +02:00
"outputs": [],
"source": [
2019-01-18 16:08:37 +01:00
"from sklearn.datasets import fetch_openml\n",
"\n",
2021-03-01 21:29:06 +01:00
"mnist = fetch_openml('mnist_784', version=1, as_frame=False)\n",
2019-01-18 16:08:37 +01:00
"mnist.target = mnist.target.astype(np.uint8)"
2017-04-07 21:33:53 +02:00
]
},
2016-09-27 23:31:21 +02:00
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 26,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2019-01-18 16:08:37 +01:00
"rnd_clf = RandomForestClassifier(n_estimators=100, random_state=42)\n",
2016-09-27 23:31:21 +02:00
"rnd_clf.fit(mnist[\"data\"], mnist[\"target\"])"
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 27,
2018-05-08 12:43:49 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
"def plot_digit(data):\n",
" image = data.reshape(28, 28)\n",
2019-01-16 16:42:00 +01:00
" plt.imshow(image, cmap = mpl.cm.hot,\n",
2016-09-27 23:31:21 +02:00
" interpolation=\"nearest\")\n",
" plt.axis(\"off\")"
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 28,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
"plot_digit(rnd_clf.feature_importances_)\n",
"\n",
"cbar = plt.colorbar(ticks=[rnd_clf.feature_importances_.min(), rnd_clf.feature_importances_.max()])\n",
"cbar.ax.set_yticklabels(['Not important', 'Very important'])\n",
"\n",
"save_fig(\"mnist_feature_importance_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"# Boosting\n",
"## AdaBoost"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 29,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
"from sklearn.ensemble import AdaBoostClassifier\n",
"\n",
"ada_clf = AdaBoostClassifier(\n",
2017-06-02 10:57:06 +02:00
" DecisionTreeClassifier(max_depth=1), n_estimators=200,\n",
" algorithm=\"SAMME.R\", learning_rate=0.5, random_state=42)\n",
"ada_clf.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 30,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2017-06-02 10:57:06 +02:00
"source": [
2016-09-27 23:31:21 +02:00
"plot_decision_boundary(ada_clf, X, y)"
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Code to generate Figure 7– 8. Decision boundaries of consecutive predictors:**"
]
},
2016-09-27 23:31:21 +02:00
{
"cell_type": "code",
2019-04-15 18:06:57 +02:00
"execution_count": 31,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
"m = len(X_train)\n",
"\n",
2019-10-13 10:58:36 +02:00
"fix, axes = plt.subplots(ncols=2, figsize=(10,4), sharey=True)\n",
"for subplot, learning_rate in ((0, 1), (1, 0.5)):\n",
2021-02-14 03:02:09 +01:00
" sample_weights = np.ones(m) / m\n",
2019-10-13 10:58:36 +02:00
" plt.sca(axes[subplot])\n",
2016-09-27 23:31:21 +02:00
" for i in range(5):\n",
2021-02-14 03:02:09 +01:00
" svm_clf = SVC(kernel=\"rbf\", C=0.2, gamma=0.6, random_state=42)\n",
" svm_clf.fit(X_train, y_train, sample_weight=sample_weights * m)\n",
2016-09-27 23:31:21 +02:00
" y_pred = svm_clf.predict(X_train)\n",
2021-02-14 03:02:09 +01:00
"\n",
" r = sample_weights[y_pred != y_train].sum() / sample_weights.sum() # equation 7-1\n",
" alpha = learning_rate * np.log((1 - r) / r) # equation 7-2\n",
" sample_weights[y_pred != y_train] *= np.exp(alpha) # equation 7-3\n",
" sample_weights /= sample_weights.sum() # normalization step\n",
"\n",
2016-09-27 23:31:21 +02:00
" plot_decision_boundary(svm_clf, X, y, alpha=0.2)\n",
2017-09-15 16:41:15 +02:00
" plt.title(\"learning_rate = {}\".format(learning_rate), fontsize=16)\n",
2019-10-13 10:58:36 +02:00
" if subplot == 0:\n",
2021-02-14 03:02:09 +01:00
" plt.text(-0.75, -0.95, \"1\", fontsize=14)\n",
" plt.text(-1.05, -0.95, \"2\", fontsize=14)\n",
" plt.text(1.0, -0.95, \"3\", fontsize=14)\n",
" plt.text(-1.45, -0.5, \"4\", fontsize=14)\n",
" plt.text(1.36, -0.95, \"5\", fontsize=14)\n",
2019-10-13 10:58:36 +02:00
" else:\n",
" plt.ylabel(\"\")\n",
2016-09-27 23:31:21 +02:00
"\n",
"save_fig(\"boosting_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2021-10-03 12:05:49 +02:00
"## Gradient Boosting"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let create a simple quadratic dataset:"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 32,
2018-05-08 12:43:49 +02:00
"metadata": {},
2017-06-02 10:57:06 +02:00
"outputs": [],
"source": [
2017-06-06 16:32:08 +02:00
"np.random.seed(42)\n",
"X = np.random.rand(100, 1) - 0.5\n",
"y = 3*X[:, 0]**2 + 0.05 * np.random.randn(100)"
2017-06-02 10:57:06 +02:00
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's train a decision tree regressor on this dataset:"
]
},
2017-06-02 10:57:06 +02:00
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 33,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
"from sklearn.tree import DecisionTreeRegressor\n",
"\n",
"tree_reg1 = DecisionTreeRegressor(max_depth=2, random_state=42)\n",
2017-06-02 10:57:06 +02:00
"tree_reg1.fit(X, y)"
]
},
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 34,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2017-06-02 10:57:06 +02:00
"source": [
2016-09-27 23:31:21 +02:00
"y2 = y - tree_reg1.predict(X)\n",
"tree_reg2 = DecisionTreeRegressor(max_depth=2, random_state=42)\n",
2017-06-02 10:57:06 +02:00
"tree_reg2.fit(X, y2)"
]
},
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 35,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2017-06-02 10:57:06 +02:00
"source": [
2016-09-27 23:31:21 +02:00
"y3 = y2 - tree_reg2.predict(X)\n",
"tree_reg3 = DecisionTreeRegressor(max_depth=2, random_state=42)\n",
2017-06-02 10:57:06 +02:00
"tree_reg3.fit(X, y3)"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 36,
2018-05-08 12:43:49 +02:00
"metadata": {},
2017-06-02 10:57:06 +02:00
"outputs": [],
"source": [
"X_new = np.array([[0.8]])"
]
},
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 37,
2017-09-15 16:41:15 +02:00
"metadata": {},
2017-06-02 10:57:06 +02:00
"outputs": [],
"source": [
"y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))"
]
},
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 38,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2017-06-02 10:57:06 +02:00
"source": [
"y_pred"
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Code to generate Figure 7– 9. In this depiction of Gradient Boosting, the first predictor (top left) is trained normally, then each consecutive predictor (middle left and lower left) is trained on the previous predictor’ s residuals; the right column shows the resulting ensemble’ s predictions:**"
]
},
2017-06-02 10:57:06 +02:00
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 39,
2017-09-15 16:41:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
"def plot_predictions(regressors, X, y, axes, label=None, style=\"r-\", data_style=\"b.\", data_label=None):\n",
" x1 = np.linspace(axes[0], axes[1], 500)\n",
" y_pred = sum(regressor.predict(x1.reshape(-1, 1)) for regressor in regressors)\n",
" plt.plot(X[:, 0], y, data_style, label=data_label)\n",
" plt.plot(x1, y_pred, style, linewidth=2, label=label)\n",
" if label or data_label:\n",
" plt.legend(loc=\"upper center\", fontsize=16)\n",
2019-06-08 15:59:55 +02:00
" plt.axis(axes)"
]
},
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 40,
2019-06-08 15:59:55 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2019-06-08 15:59:55 +02:00
"source": [
2016-09-27 23:31:21 +02:00
"plt.figure(figsize=(11,11))\n",
"\n",
"plt.subplot(321)\n",
"plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h_1(x_1)$\", style=\"g-\", data_label=\"Training set\")\n",
"plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n",
"plt.title(\"Residuals and tree predictions\", fontsize=16)\n",
"\n",
"plt.subplot(322)\n",
"plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h(x_1) = h_1(x_1)$\", data_label=\"Training set\")\n",
"plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n",
"plt.title(\"Ensemble predictions\", fontsize=16)\n",
"\n",
"plt.subplot(323)\n",
"plot_predictions([tree_reg2], X, y2, axes=[-0.5, 0.5, -0.5, 0.5], label=\"$h_2(x_1)$\", style=\"g-\", data_style=\"k+\", data_label=\"Residuals\")\n",
"plt.ylabel(\"$y - h_1(x_1)$\", fontsize=16)\n",
"\n",
"plt.subplot(324)\n",
"plot_predictions([tree_reg1, tree_reg2], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h(x_1) = h_1(x_1) + h_2(x_1)$\")\n",
"plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n",
"\n",
"plt.subplot(325)\n",
"plot_predictions([tree_reg3], X, y3, axes=[-0.5, 0.5, -0.5, 0.5], label=\"$h_3(x_1)$\", style=\"g-\", data_style=\"k+\")\n",
"plt.ylabel(\"$y - h_1(x_1) - h_2(x_1)$\", fontsize=16)\n",
"plt.xlabel(\"$x_1$\", fontsize=16)\n",
"\n",
"plt.subplot(326)\n",
"plot_predictions([tree_reg1, tree_reg2, tree_reg3], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h(x_1) = h_1(x_1) + h_2(x_1) + h_3(x_1)$\")\n",
"plt.xlabel(\"$x_1$\", fontsize=16)\n",
"plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n",
"\n",
"save_fig(\"gradient_boosting_plot\")\n",
"plt.show()"
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's try a gradient boosting regressor:"
]
},
2016-09-27 23:31:21 +02:00
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 41,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
"from sklearn.ensemble import GradientBoostingRegressor\n",
"\n",
2017-06-02 10:57:06 +02:00
"gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=1.0, random_state=42)\n",
"gbrt.fit(X, y)"
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Code to generate Figure 7– 10. GBRT ensembles with not enough predictors (left) and too many (right):**"
]
},
2017-06-02 10:57:06 +02:00
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 42,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
2017-06-02 10:57:06 +02:00
"source": [
2016-09-27 23:31:21 +02:00
"gbrt_slow = GradientBoostingRegressor(max_depth=2, n_estimators=200, learning_rate=0.1, random_state=42)\n",
2017-06-02 10:57:06 +02:00
"gbrt_slow.fit(X, y)"
]
},
{
"cell_type": "code",
2021-02-14 03:02:09 +01:00
"execution_count": 43,
2017-09-15 16:41:15 +02:00
"metadata": {},
2021-05-25 06:56:34 +02:00
"outputs": [],
"source": [
"fix, axes = plt.subplots(ncols=2, figsize=(10,4), sharey=True)\n",
"\n",
"plt.sca(axes[0])\n",
"plot_predictions([gbrt], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"Ensemble predictions\")\n",
"plt.title(\"learning_rate={}, n_estimators={}\".format(gbrt.learning_rate, gbrt.n_estimators), fontsize=14)\n",
"plt.xlabel(\"$x_1$\", fontsize=16)\n",
"plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n",
"\n",
"plt.sca(axes[1])\n",
"plot_predictions([gbrt_slow], X, y, axes=[-0.5, 0.5, -0.1, 0.8])\n",
"plt.title(\"learning_rate={}, n_estimators={}\".format(gbrt_slow.learning_rate, gbrt_slow.n_estimators), fontsize=14)\n",
"plt.xlabel(\"$x_1$\", fontsize=16)\n",
"\n",
"save_fig(\"gbrt_learning_rate_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2021-10-03 12:05:49 +02:00
"**Gradient Boosting with Early stopping:**"
2021-05-25 06:56:34 +02:00
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import mean_squared_error\n",
"\n",
"X_train, X_val, y_train, y_val = train_test_split(X, y, random_state=49)\n",
"\n",
"gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=120, random_state=42)\n",
"gbrt.fit(X_train, y_train)\n",
"\n",
"errors = [mean_squared_error(y_val, y_pred)\n",
" for y_pred in gbrt.staged_predict(X_val)]\n",
"bst_n_estimators = np.argmin(errors) + 1\n",
"\n",
"gbrt_best = GradientBoostingRegressor(max_depth=2, n_estimators=bst_n_estimators, random_state=42)\n",
"gbrt_best.fit(X_train, y_train)"
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Code to generate Figure 7– 11. Tuning the number of trees using early stopping:**"
]
},
2021-05-25 06:56:34 +02:00
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"min_error = np.min(errors)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(10, 4))\n",
"\n",
"plt.subplot(121)\n",
"plt.plot(errors, \"b.-\")\n",
"plt.plot([bst_n_estimators, bst_n_estimators], [0, min_error], \"k--\")\n",
"plt.plot([0, 120], [min_error, min_error], \"k--\")\n",
"plt.plot(bst_n_estimators, min_error, \"ko\")\n",
"plt.text(bst_n_estimators, min_error*1.2, \"Minimum\", ha=\"center\", fontsize=14)\n",
"plt.axis([0, 120, 0, 0.01])\n",
"plt.xlabel(\"Number of trees\")\n",
"plt.ylabel(\"Error\", fontsize=16)\n",
"plt.title(\"Validation error\", fontsize=14)\n",
"\n",
"plt.subplot(122)\n",
"plot_predictions([gbrt_best], X, y, axes=[-0.5, 0.5, -0.1, 0.8])\n",
"plt.title(\"Best model (%d trees)\" % bst_n_estimators, fontsize=14)\n",
"plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n",
"plt.xlabel(\"$x_1$\", fontsize=16)\n",
"\n",
"save_fig(\"early_stopping_gbrt_plot\")\n",
"plt.show()"
]
},
2021-10-03 12:05:49 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Early stopping with some patience (interrupts training only after there's no improvement for 5 epochs):"
]
},
2021-05-25 06:56:34 +02:00
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"gbrt = GradientBoostingRegressor(max_depth=2, warm_start=True, random_state=42)\n",
"\n",
"min_val_error = float(\"inf\")\n",
"error_going_up = 0\n",
"for n_estimators in range(1, 120):\n",
" gbrt.n_estimators = n_estimators\n",
" gbrt.fit(X_train, y_train)\n",
" y_pred = gbrt.predict(X_val)\n",
" val_error = mean_squared_error(y_val, y_pred)\n",
" if val_error < min_val_error:\n",
" min_val_error = val_error\n",
" error_going_up = 0\n",
" else:\n",
" error_going_up += 1\n",
" if error_going_up == 5:\n",
" break # early stopping"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"print(gbrt.n_estimators)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"print(\"Minimum validation MSE:\", min_val_error)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2021-10-03 12:05:49 +02:00
"**Using XGBoost:**"
2021-05-25 06:56:34 +02:00
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" import xgboost\n",
"except ImportError as ex:\n",
" print(\"Error: the xgboost library is not installed.\")\n",
" xgboost = None"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"if xgboost is not None: # not shown in the book\n",
" xgb_reg = xgboost.XGBRegressor(random_state=42)\n",
" xgb_reg.fit(X_train, y_train)\n",
" y_pred = xgb_reg.predict(X_val)\n",
" val_error = mean_squared_error(y_val, y_pred) # Not shown\n",
" print(\"Validation MSE:\", val_error) # Not shown"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"if xgboost is not None: # not shown in the book\n",
" xgb_reg.fit(X_train, y_train,\n",
" eval_set=[(X_val, y_val)], early_stopping_rounds=2)\n",
" y_pred = xgb_reg.predict(X_val)\n",
" val_error = mean_squared_error(y_val, y_pred) # Not shown\n",
" print(\"Validation MSE:\", val_error) # Not shown"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"%timeit xgboost.XGBRegressor().fit(X_train, y_train) if xgboost is not None else None"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"%timeit GradientBoostingRegressor().fit(X_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exercise solutions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. to 7."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See Appendix A."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 8. Voting Classifier"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Exercise: _Load the MNIST data and split it into a training set, a validation set, and a test set (e.g., use 50,000 instances for training, 10,000 for validation, and 10,000 for testing)._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The MNIST dataset was loaded earlier."
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"X_train_val, X_test, y_train_val, y_test = train_test_split(\n",
" mnist.data, mnist.target, test_size=10000, random_state=42)\n",
"X_train, X_val, y_train, y_val = train_test_split(\n",
" X_train_val, y_train_val, test_size=10000, random_state=42)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Exercise: _Then train various classifiers, such as a Random Forest classifier, an Extra-Trees classifier, and an SVM._"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.neural_network import MLPClassifier"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"random_forest_clf = RandomForestClassifier(n_estimators=100, random_state=42)\n",
"extra_trees_clf = ExtraTreesClassifier(n_estimators=100, random_state=42)\n",
"svm_clf = LinearSVC(max_iter=100, tol=20, random_state=42)\n",
"mlp_clf = MLPClassifier(random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"estimators = [random_forest_clf, extra_trees_clf, svm_clf, mlp_clf]\n",
"for estimator in estimators:\n",
" print(\"Training the\", estimator)\n",
" estimator.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"[estimator.score(X_val, y_val) for estimator in estimators]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The linear SVM is far outperformed by the other classifiers. However, let's keep it for now since it may improve the voting classifier's performance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Exercise: _Next, try to combine them into an ensemble that outperforms them all on the validation set, using a soft or hard voting classifier._"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.ensemble import VotingClassifier"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
"named_estimators = [\n",
" (\"random_forest_clf\", random_forest_clf),\n",
" (\"extra_trees_clf\", extra_trees_clf),\n",
" (\"svm_clf\", svm_clf),\n",
" (\"mlp_clf\", mlp_clf),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"voting_clf = VotingClassifier(named_estimators)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"voting_clf.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
"voting_clf.score(X_val, y_val)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"[estimator.score(X_val, y_val) for estimator in voting_clf.estimators_]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's remove the SVM to see if performance improves. It is possible to remove an estimator by setting it to `None` using `set_params()` like this:"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [],
"source": [
"voting_clf.set_params(svm_clf=None)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This updated the list of estimators:"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [],
"source": [
"voting_clf.estimators"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, it did not update the list of _trained_ estimators:"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"voting_clf.estimators_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So we can either fit the `VotingClassifier` again, or just remove the SVM from the list of trained estimators:"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [],
"source": [
"del voting_clf.estimators_[2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's evaluate the `VotingClassifier` again:"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"voting_clf.score(X_val, y_val)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A bit better! The SVM was hurting performance. Now let's try using a soft voting classifier. We do not actually need to retrain the classifier, we can just set `voting` to `\"soft\"`:"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
"voting_clf.voting = \"soft\""
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"voting_clf.score(X_val, y_val)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nope, hard voting wins in this case."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"_Once you have found one, try it on the test set. How much better does it perform compared to the individual classifiers?_"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"voting_clf.voting = \"hard\"\n",
"voting_clf.score(X_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
"[estimator.score(X_test, y_test) for estimator in voting_clf.estimators_]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The voting classifier only very slightly reduced the error rate of the best model in this case."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 9. Stacking Ensemble"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Exercise: _Run the individual classifiers from the previous exercise to make predictions on the validation set, and create a new training set with the resulting predictions: each training instance is a vector containing the set of predictions from all your classifiers for an image, and the target is the image's class. Train a classifier on this new training set._"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [],
"source": [
"X_val_predictions = np.empty((len(X_val), len(estimators)), dtype=np.float32)\n",
"\n",
"for index, estimator in enumerate(estimators):\n",
" X_val_predictions[:, index] = estimator.predict(X_val)"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
"X_val_predictions"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
"rnd_forest_blender = RandomForestClassifier(n_estimators=200, oob_score=True, random_state=42)\n",
"rnd_forest_blender.fit(X_val_predictions, y_val)"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
"rnd_forest_blender.oob_score_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You could fine-tune this blender or try other types of blenders (e.g., an `MLPClassifier`), then select the best one using cross-validation, as always."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Exercise: _Congratulations, you have just trained a blender, and together with the classifiers they form a stacking ensemble! Now let's evaluate the ensemble on the test set. For each image in the test set, make predictions with all your classifiers, then feed the predictions to the blender to get the ensemble's predictions. How does it compare to the voting classifier you trained earlier?_"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
"X_test_predictions = np.empty((len(X_test), len(estimators)), dtype=np.float32)\n",
"\n",
"for index, estimator in enumerate(estimators):\n",
" X_test_predictions[:, index] = estimator.predict(X_test)"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"y_pred = rnd_forest_blender.predict(X_test_predictions)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import accuracy_score"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [],
"source": [
"accuracy_score(y_test, y_pred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This stacking ensemble does not perform as well as the voting classifier we trained earlier, it's not quite as good as the best individual classifier."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
2021-10-15 10:46:27 +02:00
"display_name": "Python 3 (ipykernel)",
2021-05-25 06:56:34 +02:00
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2021-05-25 21:40:58 +02:00
"version": "3.7.10"
2021-05-25 06:56:34 +02:00
},
"nav_menu": {
"height": "252px",
"width": "333px"
},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}