Update to Python 3.8

main
Aurélien Geron 2021-10-16 18:14:20 +13:00
parent a655f25a65
commit 7e2b642ee8
2 changed files with 80 additions and 81 deletions

View File

@ -11,7 +11,7 @@ dependencies:
- ipython=7.28 # a powerful Python shell
- ipywidgets=7.6 # optionally used only in chapter 11 for tqdm in Jupyter
- joblib=0.14 # used only in chapter 2 to save/load Scikit-Learn models
- jupyter=1.0 # to edit and run Jupyter notebooks
- jupyterlab=3.2 # to edit and run Jupyter notebooks
- matplotlib=3.4 # beautiful plots. See tutorial tools_matplotlib.ipynb
- nbdime=3.1 # optional tool to diff Jupyter notebooks
- nltk=3.6 # optionally used in chapter 3, exercise 4
@ -24,7 +24,7 @@ dependencies:
- py-xgboost=1.4 # used only in chapter 6 for optimized Gradient Boosting
- pyglet=1.5 # used only in chapter 17 to render environments
- pyopengl=3.1 # used only in chapter 17 to render environments
- python=3.7 # Python! Not using latest version as some libs lack support
- python=3.8 # Python! Not using latest version as some libs lack support
- python-graphviz # used only in chapter 5 for dot files
- pyvirtualdisplay=2.2 # used only in chapter 17 if on headless server
- requests=2.26 # used only in chapter 18 for REST API queries
@ -34,21 +34,20 @@ dependencies:
- wheel # built-package format for pip
- widgetsnbextension=3.5 # interactive HTML widgets for Jupyter notebooks
- pip:
- tensorboard-plugin-profile==2.5.0 # profiling plugin for TensorBoard
- tensorboard==2.6.0 # TensorFlow's visualization toolkit
- tensorflow-addons==0.14.0 # used only in chapter 15 for a seq2seq impl.
- tensorflow-datasets==4.4.0 # datasets repository, ready to use
- tensorflow-hub==0.12.0 # trained ML models repository, ready to use
- tensorflow-probability==0.14.1 # Optional. Probability/Stats lib.
- tensorflow-serving-api==2.6.0 # or tensorflow-serving-api-gpu if gpu
- tensorflow==2.6.0 # Deep Learning library
- tf-agents==0.10.0 # Reinforcement Learning lib based on TensorFlow
- tfx==1.3.0 # platform to deploy production ML pipelines
- transformers==4.11.3 # Natural Language Processing lib for TF or PyTorch
- urlextract==1.4.0 # optionally used in chapter 3, exercise 4
- tensorboard-plugin-profile~=2.5.0 # profiling plugin for TensorBoard
- tensorboard~=2.7.0 # TensorFlow's visualization toolkit
- tensorflow-addons~=0.14.0 # used only in chapter 15 for a seq2seq impl.
- tensorflow-datasets~=4.4.0 # datasets repository, ready to use
- tensorflow-hub~=0.12.0 # trained ML models repository, ready to use
- tensorflow-probability~=0.14.1 # Optional. Probability/Stats lib.
- tensorflow-serving-api~=2.6.0 # or tensorflow-serving-api-gpu if gpu
- tensorflow~=2.6.0 # Deep Learning library
- tf-agents~=0.10.0 # Reinforcement Learning lib based on TensorFlow
- tfx~=1.3.0 # platform to deploy production ML pipelines
- transformers~=4.11.3 # Natural Language Processing lib for TF or PyTorch
- urlextract~=1.4.0 # optionally used in chapter 3, exercise 4
- attrs=20.3
- click=7.1
- packaging=20.9
- six=1.15
- typing-extensions=3.7

View File

@ -4,20 +4,20 @@
##### Core scientific packages
jupyter==1.0.0
matplotlib==3.4.3
numpy==1.19.5
pandas==1.3.3
scipy==1.7.1
jupyterlab~=3.2.0
matplotlib~=3.4.3
numpy~=1.19.5
pandas~=1.3.3
scipy~=1.7.1
##### Machine Learning packages
scikit-learn==1.0
scikit-learn~=1.0
# Optional: the XGBoost library is only used in chapter 7
xgboost==1.4.2
xgboost~=1.4.2
# Optional: the transformers library is only using in chapter 16
transformers==4.11.3
transformers~=4.11.3
##### TensorFlow-related packages
@ -27,70 +27,70 @@ transformers==4.11.3
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
# installation instructions.
tensorflow==2.6.0
tensorflow~=2.6.0
# Optional: the TF Serving API library is just needed for chapter 19.
tensorflow-serving-api==2.6.0 # or tensorflow-serving-api-gpu if gpu
tensorflow-serving-api~=2.6.0 # or tensorflow-serving-api-gpu if gpu
tensorboard==2.6.0
tensorboard-plugin-profile==2.5.0
tensorflow-datasets==4.4.0
tensorflow-hub==0.12.0
tensorflow-probability==0.14.1
tensorboard~=2.7.0
tensorboard-plugin-profile~=2.5.0
tensorflow-datasets~=4.4.0
tensorflow-hub~=0.12.0
tensorflow-probability~=0.14.1
# Optional: only used in chapter 13.
# Optional: only used in chapter 12.
# NOT AVAILABLE ON WINDOWS
tfx==1.3.0
tfx~=1.3.0
# Optional: only used in chapter 16.
# Optional: only used in chapter 15.
# NOT AVAILABLE ON WINDOWS
tensorflow-addons==0.14.0
tensorflow-addons~=0.14.0
##### Reinforcement Learning library (chapter 18)
##### Reinforcement Learning library (chapter 17)
# There are a few dependencies you need to install first, check out:
# https://github.com/openai/gym#installing-everything
gym[Box2D]==0.21.0
gym[Box2D]~=0.21.0
atari-py==0.2.5
# On Windows, install atari_py using:
# pip install --no-index -f https://github.com/Kojoley/atari-py/releases atari_py
tf-agents==0.10.0
tf-agents~=0.10.0
##### Image manipulation
Pillow==8.3.2
graphviz==0.17
opencv-python==4.5.3.56
pyglet==1.5.21
Pillow~=8.4.0
graphviz~=0.17
opencv-python~=4.5.3.56
pyglet~=1.5.21
#pyvirtualdisplay # needed in chapter 16, if on a headless server
#pyvirtualdisplay # needed in chapter 17, if on a headless server
# (i.e., without screen, e.g., Colab or VM)
##### Additional utilities
# Efficient jobs (caching, parallelism, persistence)
joblib==0.14.1
joblib~=0.14.1
# Easy http requests
requests==2.26.0
requests~=2.26.0
# Nice utility to diff Jupyter Notebooks.
nbdime==3.1.0
nbdime~=3.1.0
# May be useful with Pandas for complex "where" clauses (e.g., Pandas
# tutorial).
numexpr==2.7.3
numexpr~=2.7.3
# Optional: these libraries can be useful in the classification chapter,
# exercise 4.
nltk==3.6.3
urlextract==1.4.0
# Optional: these libraries can be useful in the chapter 3, exercise 4.
nltk~=3.6.5
urlextract~=1.4.0
# Optional: these libraries are only used in chapter 16
ftfy==6.0.3
ftfy~=6.0.3
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support
tqdm==4.62.3
ipywidgets==7.6.5
tqdm~=4.62.3
ipywidgets~=7.6.5