Compare commits
35 Commits
Author | SHA1 | Date |
---|---|---|
![]() |
43fe5b7931 | |
![]() |
bbb3c71d79 | |
![]() |
b616c27173 | |
![]() |
75bd923038 | |
![]() |
e758e064d0 | |
![]() |
e67636dbd6 | |
![]() |
acf1989576 | |
![]() |
cdb92ac50f | |
![]() |
41f8c89178 | |
![]() |
5664e5130e | |
![]() |
107f8c46b9 | |
![]() |
bc27afe05a | |
![]() |
7663791f33 | |
![]() |
3d0d45e6bc | |
![]() |
c7988e77b8 | |
![]() |
5ad31709a9 | |
![]() |
cd2d211259 | |
![]() |
e4e05b4788 | |
![]() |
e0c8b3eb1b | |
![]() |
2560d43c3f | |
![]() |
4e233da745 | |
![]() |
7497271ac8 | |
![]() |
5ffc222430 | |
![]() |
468ad94430 | |
![]() |
5b97c7ead2 | |
![]() |
9fb7fb2f82 | |
![]() |
d598f9d861 | |
![]() |
e4462b0cfa | |
![]() |
0d3bc7acd3 | |
![]() |
23bec87af6 | |
![]() |
142046b1c6 | |
![]() |
639533dda0 | |
![]() |
4b10406eb7 | |
![]() |
968f706218 | |
![]() |
c66f7c476d |
|
@ -5,6 +5,11 @@ namespace App;
|
|||
use Illuminate\Support\Facades\Cache;
|
||||
use Illuminate\Support\Facades\Http;
|
||||
|
||||
/*
|
||||
* Class contains methods which make calls to the API.
|
||||
* Successfull calls get cached.
|
||||
*/
|
||||
|
||||
class Api
|
||||
{
|
||||
|
||||
|
@ -14,12 +19,15 @@ class Api
|
|||
$endpoint = env('FASTAPI_URI');
|
||||
$request = $endpoint.$path;
|
||||
|
||||
// load from cache if available
|
||||
if (Cache::has($request)) {
|
||||
// return Cache::get($request);
|
||||
return Cache::get($request);
|
||||
}
|
||||
|
||||
$get = Http::timeout(1600)->get($request);
|
||||
// Set timeout to .5h
|
||||
$get = Http::timeout(1800)->get($request);
|
||||
|
||||
// return result and cache it
|
||||
if($get->successful()){
|
||||
$result = $get->json();
|
||||
Cache::put($request, $result);
|
||||
|
@ -29,81 +37,79 @@ class Api
|
|||
return null;
|
||||
}
|
||||
|
||||
public static function propertiesPerRegion()
|
||||
{
|
||||
return self::get('/region/properties');
|
||||
}
|
||||
|
||||
public static function propertiesGrowth()
|
||||
public static function propertiesGrowth(): mixed
|
||||
{
|
||||
return self::get('/properties/growth');
|
||||
}
|
||||
|
||||
public static function propertiesGeo()
|
||||
public static function propertiesGeo(): mixed
|
||||
{
|
||||
return self::get('/properties/geo');
|
||||
}
|
||||
|
||||
public static function propertyExtractions(int $id)
|
||||
public static function propertyExtractions(int $id): mixed
|
||||
{
|
||||
return self::get("/property/{$id}/extractions");
|
||||
return self::get("/properties/{$id}/extractions");
|
||||
}
|
||||
|
||||
public static function propertyCapacities(int $id)
|
||||
public static function propertyCapacities(int $id): mixed
|
||||
{
|
||||
return self::get("/property/{$id}/capacities");
|
||||
return self::get("/properties/{$id}/capacities");
|
||||
}
|
||||
|
||||
public static function propertyBase(int $id): mixed
|
||||
{
|
||||
return self::get("/property/{$id}/base");
|
||||
}
|
||||
|
||||
public static function regionBase(int $id): mixed
|
||||
{
|
||||
return self::get("/region/{$id}/base");
|
||||
}
|
||||
|
||||
public static function regionPropertiesCapacities(int $id): mixed
|
||||
{
|
||||
return self::get("/region/{$id}/properties/capacities");
|
||||
}
|
||||
|
||||
public static function regionCapacitiesMonthly(int $id, string $date): mixed
|
||||
{
|
||||
return self::get("/region/{$id}/capacities/monthly/{$date}");
|
||||
return self::get("/properties/{$id}/base");
|
||||
}
|
||||
|
||||
public static function propertyCapacitiesMonthly(int $id, string $date): mixed
|
||||
{
|
||||
return self::get("/property/{$id}/capacities/monthly/{$date}");
|
||||
}
|
||||
|
||||
public static function regionCapacitiesDaily(int $id, string $date): mixed
|
||||
{
|
||||
return self::get("/region/{$id}/capacities/weekdays/{$date}");
|
||||
return self::get("/properties/{$id}/capacities/monthly/{$date}");
|
||||
}
|
||||
|
||||
public static function propertyCapacitiesDaily(int $id, string $date): mixed
|
||||
{
|
||||
return self::get("/property/{$id}/capacities/weekdays/{$date}");
|
||||
return self::get("/properties/{$id}/capacities/daily/{$date}");
|
||||
}
|
||||
|
||||
public static function propertyNeighbours(int $id): mixed
|
||||
{
|
||||
return self::get("/property/{$id}/neighbours");
|
||||
return self::get("/properties/{$id}/neighbours");
|
||||
}
|
||||
|
||||
public static function regions(): mixed
|
||||
{
|
||||
return self::get('/regions');
|
||||
}
|
||||
|
||||
public static function regionBase(int $id): mixed
|
||||
{
|
||||
return self::get("/regions/{$id}/base");
|
||||
}
|
||||
|
||||
public static function regionPropertiesCapacities(int $id): mixed
|
||||
{
|
||||
return self::get("/regions/{$id}/properties/capacities");
|
||||
}
|
||||
|
||||
public static function regionCapacitiesMonthly(int $id, string $date): mixed
|
||||
{
|
||||
return self::get("/regions/{$id}/capacities/monthly/{$date}");
|
||||
}
|
||||
|
||||
public static function regionCapacitiesDaily(int $id, string $date): mixed
|
||||
{
|
||||
return self::get("/regions/{$id}/capacities/daily/{$date}");
|
||||
}
|
||||
|
||||
public static function regionCapacities(int $id): mixed
|
||||
{
|
||||
return self::get("/region/{$id}/capacities");
|
||||
return self::get("/regions/{$id}/capacities");
|
||||
}
|
||||
|
||||
public static function regionMovingAverage(int $id, string $date): mixed
|
||||
{
|
||||
return self::get("/region/{$id}/movingAverage/{$date}");
|
||||
return self::get("/regions/{$id}/moving-average/{$date}");
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -108,6 +108,20 @@ button[popovertarget]>span{
|
|||
font-size: 1em;
|
||||
}
|
||||
|
||||
[popover] h3{
|
||||
font-size: .95em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
|
||||
p.formula{
|
||||
font-family: monospace;
|
||||
border: 1px solid #aaa;
|
||||
padding: .5em 1em;
|
||||
}
|
||||
|
||||
p + p{
|
||||
margin-top: 1em;
|
||||
}
|
||||
|
||||
/*
|
||||
9. Create a root stacking context
|
||||
|
@ -135,21 +149,32 @@ body>header>nav{
|
|||
background: #fff;
|
||||
border-radius: .2em;
|
||||
position: relative;
|
||||
border: 1px solid #fff;
|
||||
}
|
||||
|
||||
body>header>nav>ul{
|
||||
position: absolute;
|
||||
background: #fff;
|
||||
width: 100%;
|
||||
width: calc(100% + 2px);
|
||||
list-style: none;
|
||||
padding: 0;
|
||||
padding: 0 0 1em;
|
||||
top: -999em;
|
||||
left: -999em;
|
||||
border-radius: 0 0 .2em .2em;
|
||||
border-left: 1px solid #aaa;
|
||||
border-right: 1px solid #aaa;
|
||||
border-bottom: 1px solid #aaa;
|
||||
}
|
||||
|
||||
body>header>nav:hover{
|
||||
border-radius: .2em .2em 0 0;
|
||||
border: 1px solid #aaa;
|
||||
|
||||
}
|
||||
|
||||
body>header>nav:hover ul{
|
||||
top: initial;
|
||||
left: 0;
|
||||
left: -1px;
|
||||
}
|
||||
|
||||
body>header>nav>ul>li a,
|
||||
|
@ -180,10 +205,10 @@ body.overview main{
|
|||
grid-template-columns: repeat(8, minmax(1%, 50%));
|
||||
grid-template-rows: repeat(4, 1fr);
|
||||
grid-template-areas:
|
||||
"chart3 chart3 chart3 chart1 chart1 chart1 chart4 chart4"
|
||||
"chart3 chart3 chart3 chart1 chart1 chart1 chart4 chart4"
|
||||
"chart3 chart3 chart3 chart2 chart2 chart2 chart4 chart4"
|
||||
"chart3 chart3 chart3 chart2 chart2 chart2 chart4 chart4"
|
||||
"chart1 chart1 chart1 chart2 chart2 chart2 chart4 chart4"
|
||||
"chart1 chart1 chart1 chart2 chart2 chart2 chart4 chart4"
|
||||
"chart1 chart1 chart1 chart3 chart3 chart3 chart4 chart4"
|
||||
"chart1 chart1 chart1 chart3 chart3 chart3 chart4 chart4"
|
||||
}
|
||||
|
||||
body.region main{
|
||||
|
@ -203,8 +228,8 @@ body.property main{
|
|||
grid-template-columns: repeat(4, minmax(10%, 50%));
|
||||
grid-template-rows: repeat(4, 1fr) 4em;
|
||||
grid-template-areas:
|
||||
"chart2 chart2 chart1 chart1"
|
||||
"chart2 chart2 chart1 chart1"
|
||||
"chart1 chart1 chart2 chart2"
|
||||
"chart1 chart1 chart2 chart2"
|
||||
"chart5 chart5 chart3 chart4"
|
||||
"chart5 chart5 chart3 chart4"
|
||||
"chart5 chart5 timeline timeline";
|
||||
|
@ -249,10 +274,28 @@ article>header>h2{
|
|||
height: auto;
|
||||
}
|
||||
|
||||
main{
|
||||
body.overview main,
|
||||
body.region main,
|
||||
body.property main{
|
||||
height: auto;
|
||||
grid-template-columns: 100%;
|
||||
grid-template-rows: repeat(4, minmax(20em, 25em));
|
||||
grid-template-rows: repeat(5, minmax(20em, 25em)) 4em;
|
||||
grid-template-areas: "chart1" "chart2" "chart3" "chart4" "chart5" "chart6" "timeline";
|
||||
}
|
||||
|
||||
body.overview main{
|
||||
grid-template-rows: minmax(20em, 40em) repeat(3, minmax(20em, 25em));
|
||||
grid-template-areas: "chart1" "chart2" "chart3" "chart4";
|
||||
}
|
||||
|
||||
body.region main{
|
||||
grid-template-rows: minmax(20em, 40em) repeat(4, minmax(20em, 25em)) 4em;
|
||||
grid-template-areas: "chart1" "chart2" "chart3" "chart4" "chart6" "timeline";
|
||||
}
|
||||
|
||||
body.property main{
|
||||
grid-template-rows: repeat(5, minmax(20em, 25em)) 4em;
|
||||
grid-template-areas: "chart1" "chart2" "chart3" "chart4" "chart5" "timeline";
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -5,34 +5,44 @@
|
|||
<strong>Start</strong>
|
||||
<ul>
|
||||
@foreach($regions as $r)
|
||||
<li><a href="/region/{{ $r['region_id'] }}">{{ $r['region_name'] }}</a></li>
|
||||
<li><a href="/region/{{ $r['id'] }}">{{ $r['name'] }}</a></li>
|
||||
@endforeach
|
||||
</ul>
|
||||
</nav>
|
||||
@endsection
|
||||
@section('main')
|
||||
<article class="header" style="grid-area: chart3;">
|
||||
<article class="header" style="grid-area: chart1;">
|
||||
<header>
|
||||
<h2>Auslastung aller Mietobjekte über Gesamte Zeit</h2>
|
||||
<h2>Verfügbarkeit aller Mietobjekte über gesamten beobachteten Zeitraum</h2>
|
||||
<button popovertarget="pop1">
|
||||
<span>Erklärungen zum Diagramm</span>
|
||||
</button>
|
||||
<div popover id="pop1">
|
||||
<h2>Auslastung aller Mietobjekte über Gesamte Zeit</h2>
|
||||
<h2>Verfügbarkeit aller Mietobjekte über gesamten beobachteten Zeitraum</h2>
|
||||
<p>
|
||||
Das Diagramm gibt eine Übersicht, wie die Auslastung von Mietobjekten am Datum des Scrapings waren. Dazu wird für jedes Mietobjekt die durchschnittliche Verfügbarkeit ermittelt.
|
||||
Das Diagramm zeigt die Verfügbarkeit aller Mietobjekte zu allen beobachteten Zeitpunkten.
|
||||
</p>
|
||||
<ul>
|
||||
<li>X-Achse: Zeitpunkt Scraping.</li>
|
||||
<li>X-Achse: Zeitpunkt Beobachtung.</li>
|
||||
<li>Y-Achse: Mietobjekte.</li>
|
||||
<li>Kategorien: 0% = Das Mietobjekt ist komplett verfügbar; 100% = Das Mietobjekt ist komplett ausgebucht.</li>
|
||||
<li>Kategorien: 0% = Das Mietobjekt ist komplett Ausgebucht; 100% = Das Mietobjekt kann zu allen Verfügbaren Daten gebucht werden.</li>
|
||||
</ul>
|
||||
|
||||
<h3>Berrechnung Verfügbarkeit</h3>
|
||||
<p>Die Verfügbarkeit eines Mietobjekt errechnet sich folgendermassen:</p>
|
||||
<p class="formula">
|
||||
Verfügbarkeit = (100 / (Anzahl Buchungsdaten * 2)) * Summe Status
|
||||
</p>
|
||||
<ul>
|
||||
<li>Status: Jeder verfügbare Kalendertag kann den Status «Nicht Verfügbar» (0), «Verfügbar (kein Anreisetag)» (1) oder «Verfügbar» (2) aufweisen.</li>
|
||||
<li>Anzahl Buchungsdaten: Die Summe aller angebotenen Buchungsdaten mit zwei multipliziert (= Alle Buchungdaten haben den Status «Verfügbar»)</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div>
|
||||
</header>
|
||||
<div id="chart-heatmap"></div>
|
||||
</article>
|
||||
<article class="header" style="grid-area: chart1;">
|
||||
<article class="header" style="grid-area: chart2;">
|
||||
<header>
|
||||
<h2>
|
||||
Anzahl jemals gefundene Kurzzeitmietobjekte pro Region
|
||||
|
@ -41,20 +51,20 @@
|
|||
<span>Erklärungen zum Diagramm</span>
|
||||
</button>
|
||||
<div popover id="pop2">
|
||||
<h2>Anzahl jemals gefundene Kurzzeitmietobjekte pro Region</h2>
|
||||
<h2>Anzahl jemals gefundener Mietobjekte pro Region</h2>
|
||||
<p>
|
||||
Das Balkendiagramm zeigt wieviele Kurzzeitmietobjekte insgesamt pro Region über den gesamten Datenerhebungszeitraum, gefunden wurden.
|
||||
Das Balkendiagramm zeigt die Anzahl jemals gefundener Mietobjekte pro Region.
|
||||
</p>
|
||||
<ul>
|
||||
<li>X-Achse: Bezeichnung der Region.</li>
|
||||
<li>Y-Achse: Anzahl Mietobjekte.</li>
|
||||
<li>X-Achse: Region</li>
|
||||
<li>Y-Achse: Anzahl Mietobjekte</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div>
|
||||
</header>
|
||||
<div id="chart-props-per-region"></div>
|
||||
</article>
|
||||
<article class="header" style="grid-area: chart2;">
|
||||
<article class="header" style="grid-area: chart3;">
|
||||
<header>
|
||||
<h2>
|
||||
Entwicklung der Anzahl jemals gefunden Kurzzeitmietobjekte
|
||||
|
@ -63,13 +73,13 @@
|
|||
<span>Erklärungen zum Diagramm</span>
|
||||
</button>
|
||||
<div popover id="pop3">
|
||||
<h2>Entwicklung Anzahl jemals gefundener Kurzzeitmietobjekte pro Region</h2>
|
||||
<h2>Entwicklung Anzahl jemals gefundener Mietobjekte pro Region</h2>
|
||||
<p>
|
||||
Das Liniendiagramm zeigt die Entwicklung der gefundenen Mietobjekte pro Region.
|
||||
Das Liniendiagramm zeigt die Entwicklung aller jemals gefundener Mietobjekte pro Region.
|
||||
</p>
|
||||
<ul>
|
||||
<li>X-Achse: Zeitpunkt Scraping.</li>
|
||||
<li>Y-Achse: Anzahl Mietobjekte.</li>
|
||||
<li>X-Achse: Zeitpunkt Beobachtung</li>
|
||||
<li>Y-Achse: Anzahl Mietobjekte</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div>
|
||||
|
@ -82,7 +92,7 @@
|
|||
<script type="module">
|
||||
const sharedOptions = {
|
||||
basic: {
|
||||
color: {!! $chartOptions['colors'] !!},
|
||||
color: {!! $diagramsOptions['shared']['colors'] !!},
|
||||
grid: {
|
||||
top: 30,
|
||||
left: 70,
|
||||
|
@ -101,7 +111,7 @@ const sharedOptions = {
|
|||
}
|
||||
}
|
||||
}
|
||||
const extractionDates = {!! json_encode($regionPropertiesCapacities['scrapeDates']) !!};
|
||||
const extractionDates = {!! $diagramsOptions['shared']['extractionDates'] !!};
|
||||
|
||||
const chartHeatmap = document.getElementById('chart-heatmap');
|
||||
const cHeatmap = echarts.init(chartHeatmap);
|
||||
|
@ -111,10 +121,13 @@ const cHeatmapOptions = {
|
|||
position: 'top'
|
||||
},
|
||||
grid: {
|
||||
show: true,
|
||||
borderWidth: 1,
|
||||
borderColor: '#aaa',
|
||||
top: 30,
|
||||
right: 45,
|
||||
bottom: 50,
|
||||
left: 5
|
||||
bottom: 70,
|
||||
left: 30
|
||||
},
|
||||
dataZoom: [{
|
||||
type: 'slider'
|
||||
|
@ -125,23 +138,52 @@ const cHeatmapOptions = {
|
|||
yAxisIndex: 0,
|
||||
}],
|
||||
xAxis: {
|
||||
show: false,
|
||||
name: 'Kurzzeitmietobjekt',
|
||||
show: true,
|
||||
name: 'Zeitpunkt Beobachtung',
|
||||
type: 'category',
|
||||
data: extractionDates,
|
||||
splitArea: {
|
||||
show: false
|
||||
},
|
||||
splitArea: {
|
||||
show: false
|
||||
},
|
||||
axisLabel: {
|
||||
show: true,
|
||||
show: false,
|
||||
},
|
||||
axisTick: {
|
||||
show: false,
|
||||
},
|
||||
axisLine: {
|
||||
show: false,
|
||||
},
|
||||
nameLocation: 'center',
|
||||
nameGap: 10,
|
||||
nameTextStyle: {
|
||||
fontWeight: 'bold',
|
||||
}
|
||||
},
|
||||
yAxis: {
|
||||
show: false,
|
||||
show: true,
|
||||
type: 'category',
|
||||
data: {!! json_encode($regionPropertiesCapacities['property_ids']) !!},
|
||||
data: {!! $diagramsOptions['heatmap']['yAxis']['data'] !!},
|
||||
splitArea: {
|
||||
show: true
|
||||
show: false
|
||||
},
|
||||
axisTick: {
|
||||
show: false,
|
||||
},
|
||||
axisLine: {
|
||||
show: false,
|
||||
},
|
||||
axisLabel: {
|
||||
show: false,
|
||||
},
|
||||
name: 'Mietobjekte',
|
||||
nameLocation: 'center',
|
||||
nameGap: 10,
|
||||
nameTextStyle: {
|
||||
fontWeight: 'bold',
|
||||
}
|
||||
},
|
||||
visualMap: {
|
||||
|
@ -161,16 +203,16 @@ const cHeatmapOptions = {
|
|||
},
|
||||
series: [
|
||||
{
|
||||
name: 'Auslastung',
|
||||
name: 'Verfügbarkeit',
|
||||
type: 'heatmap',
|
||||
blurSize: 0,
|
||||
data: {!! json_encode($regionPropertiesCapacities['values']) !!},
|
||||
data: {!! $diagramsOptions['heatmap']['series']['data'] !!},
|
||||
label: {
|
||||
show: false
|
||||
},
|
||||
tooltip: {
|
||||
formatter: (data) => {
|
||||
return `Kurzzeitmietobjekte-ID: ${data.data[1]}<br />Datum Scraping: ${data.data[0]}<br/>Auslastung: ${data.data[2].toFixed(2)} %`
|
||||
return `Kurzzeitmietobjekte-ID: ${data.data[1]}<br />Beobachtungszeitpunkt: ${data.data[0]}<br/>Verfügbarkeit: ${data.data[2].toFixed(2)} %`
|
||||
},
|
||||
},
|
||||
emphasis: {
|
||||
|
@ -198,7 +240,7 @@ const cPropsPerRegionOptions = {
|
|||
fontWeight: 'bold',
|
||||
},
|
||||
type: 'category',
|
||||
data: {!! $propsPerRegion[1] !!}
|
||||
data: {!! $diagramsOptions['propertiesPerRegion']['xAxis']['data'] !!}
|
||||
},
|
||||
yAxis: {
|
||||
type: 'value',
|
||||
|
@ -211,7 +253,7 @@ const cPropsPerRegionOptions = {
|
|||
},
|
||||
series: [
|
||||
{
|
||||
data: {!! $propsPerRegion[2] !!},
|
||||
data: {!! $diagramsOptions['propertiesPerRegion']['yAxis']['data'] !!},
|
||||
type: 'bar',
|
||||
itemStyle: {
|
||||
color: (e) => {
|
||||
|
@ -227,21 +269,17 @@ cPropsPerRegion.setOption(cPropsPerRegionOptions);
|
|||
const chartExtractions = document.getElementById('extractions');
|
||||
const cExtractions = echarts.init(chartExtractions);
|
||||
|
||||
const filters = {
|
||||
regions: ["Alle", "Davos", "Engadin", "Heidiland", "St. Moritz"]
|
||||
}
|
||||
|
||||
const cExtractionsOptions = {
|
||||
color: sharedOptions.basic.color,
|
||||
tooltip: {
|
||||
trigger: 'axis'
|
||||
},
|
||||
legend: {
|
||||
data: filters.regions
|
||||
show: true
|
||||
},
|
||||
grid: sharedOptions.basic.grid,
|
||||
xAxis: {
|
||||
name: 'Zeitpunkt Scraping',
|
||||
name: 'Zeitpunkt Beobachtung',
|
||||
nameLocation: 'center',
|
||||
nameGap: 24,
|
||||
nameTextStyle: {
|
||||
|
@ -265,27 +303,31 @@ const cExtractionsOptions = {
|
|||
name: 'Alle',
|
||||
type: 'line',
|
||||
stack: 'Total',
|
||||
data: {!! json_encode($growth['total_all']) !!},
|
||||
data: {!! json_encode($diagramsOptions['extractions']['series']['total_all']) !!},
|
||||
},
|
||||
{
|
||||
connectNulls: true,
|
||||
name: 'Davos',
|
||||
type: 'line',
|
||||
data: {!! json_encode($growth['total_davos']) !!}
|
||||
data: {!! json_encode($diagramsOptions['extractions']['series']['total_davos']) !!}
|
||||
},
|
||||
{
|
||||
connectNulls: true,
|
||||
name: 'Engadin',
|
||||
type: 'line',
|
||||
data: {!! json_encode($growth['total_engadin']) !!}
|
||||
data: {!! json_encode($diagramsOptions['extractions']['series']['total_engadin']) !!}
|
||||
},
|
||||
{
|
||||
connectNulls: true,
|
||||
name: 'Heidiland',
|
||||
type: 'line',
|
||||
data: {!! json_encode($growth['total_heidiland']) !!}
|
||||
data: {!! json_encode($diagramsOptions['extractions']['series']['total_heidiland']) !!}
|
||||
},
|
||||
{
|
||||
connectNulls: true,
|
||||
name: 'St. Moritz',
|
||||
type: 'line',
|
||||
data: {!! json_encode($growth['total_stmoritz']) !!}
|
||||
data: {!! json_encode($diagramsOptions['extractions']['series']['total_stmoritz']) !!}
|
||||
},
|
||||
]
|
||||
};
|
||||
|
@ -318,12 +360,6 @@ cHeatmap.on('click', 'series', (e) => {
|
|||
window.open(`/property/${e.value[1]}?date=${e.value[0]}`, '_self');
|
||||
})
|
||||
|
||||
cPropsPerRegion.on('click', 'series', (e) => {
|
||||
console.log(e.dataIndex);
|
||||
//window.open(`/property/${e.value[1]}?date=${e.value[0]}`, '_self');
|
||||
})
|
||||
|
||||
|
||||
|
||||
</script>
|
||||
@endsection
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
@extends('base')
|
||||
@section('body-class', 'property')
|
||||
@section('header')
|
||||
<nav>
|
||||
<strong>Property: {{ $base['check_data'] }} ({{ $base['region_name'] }})</strong>
|
||||
<ul>
|
||||
<li><a href="/">Start</a></li>
|
||||
@foreach($regions as $r)
|
||||
<li><a href="/region/{{ $r['id'] }}">{{ $r['name'] }}</a></li>
|
||||
@endforeach
|
||||
</ul>
|
||||
</nav>
|
||||
<button popovertarget="prop-details"></button>
|
||||
<div popover id="prop-details">
|
||||
<dl>
|
||||
<dt>Region</dt>
|
||||
<dd>{{ $base['region_name'] }}</dd>
|
||||
<dt>Zum ersten mal gefunden</dt>
|
||||
<dd>{{ $base['first_found'] }}</dd>
|
||||
<dt>Zum letzten mal gefunden</dt>
|
||||
<dd>{{ $base['last_found'] }}</dd>
|
||||
</dl>
|
||||
</div>
|
||||
@endsection
|
||||
@section('main')
|
||||
<p>Für dieses Mietobjekt sind keine Daten vorhanden.</p>
|
||||
@endsection
|
|
@ -2,11 +2,11 @@
|
|||
@section('body-class', 'property')
|
||||
@section('header')
|
||||
<nav>
|
||||
<strong>Property: {{ $base['check_data'] }}</strong>
|
||||
<strong>Mietobjekt: {{ $base['latlng'] }} ({{ $base['region_name'] }})</strong>
|
||||
<ul>
|
||||
<li><a href="/">Start</a></li>
|
||||
@foreach($regions as $r)
|
||||
<li><a href="/region/{{ $r['region_id'] }}">{{ $r['region_name'] }}</a></li>
|
||||
<li><a href="/region/{{ $r['id'] }}">{{ $r['name'] }}</a></li>
|
||||
@endforeach
|
||||
</ul>
|
||||
</nav>
|
||||
|
@ -27,10 +27,10 @@
|
|||
<article style="grid-area: timeline;">
|
||||
<div id="timeline"></div>
|
||||
</article>
|
||||
<article class="header" style="grid-area: chart1;">
|
||||
<article class="header" style="grid-area: chart2;">
|
||||
<header>
|
||||
<h2 id="belegung-title">
|
||||
Kalenderansicht der Belegung am <span class="date">{{ $startDate }}</span>
|
||||
Kalenderansicht der Verfügbarkeit am <span class="date">{{ $startDate }}</span>
|
||||
</h2><button popovertarget="popup-cal"></button>
|
||||
<div popover id="popup-cal">
|
||||
<p>
|
||||
|
@ -51,13 +51,13 @@
|
|||
<article class="header" style="grid-area: chart3;">
|
||||
<header>
|
||||
<h2>
|
||||
Belegung Mietobjekt Monate am <span class="date">{{ $startDate }}</span>
|
||||
Verfügbarkeit Mietobjekt Monate am <span class="date">{{ $startDate }}</span>
|
||||
</h2>
|
||||
</header>
|
||||
<div id="chart-capacity-monthly">
|
||||
</div>
|
||||
</article>
|
||||
<article class="header" style="grid-area: chart2;">
|
||||
<article class="header" style="grid-area: chart1;">
|
||||
<header>
|
||||
<h2>
|
||||
Entwicklung der Verfügbarkeit
|
||||
|
@ -73,7 +73,7 @@
|
|||
<article class="header" style="grid-area: chart4;">
|
||||
<header>
|
||||
<h2>
|
||||
Belegung Mietobjekt Tage am <span class="date">{{ $startDate }}</span>
|
||||
Verfügbarkeit Mietobjekt Tage am <span class="date">{{ $startDate }}</span>
|
||||
</h2>
|
||||
</header>
|
||||
<div id="chart-capacity-daily">
|
||||
|
@ -81,41 +81,41 @@
|
|||
<script type="module">
|
||||
|
||||
const sharedOptions = {
|
||||
basic: {
|
||||
color: {!! $chartOptions['colors'] !!},
|
||||
grid: {
|
||||
top: 20,
|
||||
left: 60,
|
||||
right: 0,
|
||||
bottom: 50
|
||||
},
|
||||
tooltip: {
|
||||
show: true,
|
||||
trigger: 'axis',
|
||||
valueFormatter: (value) => value.toFixed(2)+' %'
|
||||
},
|
||||
name: (opt) => {
|
||||
return {
|
||||
name: opt.name,
|
||||
nameLocation: opt.location,
|
||||
nameGap: 24,
|
||||
nameTextStyle: {
|
||||
fontWeight: 'bold',
|
||||
extractiondates: {!! $diagramsOptions['shared']['extractiondates']!!},
|
||||
basic: {
|
||||
color: {!!$diagramsOptions['shared']['colors']!!},
|
||||
grid: {
|
||||
top: 20,
|
||||
left: 60,
|
||||
right: 0,
|
||||
bottom: 50
|
||||
},
|
||||
}
|
||||
tooltip: {
|
||||
show: true,
|
||||
trigger: 'axis',
|
||||
valueFormatter: (value) => value.toFixed(2) + ' %'
|
||||
},
|
||||
name: (opt) => {
|
||||
return {
|
||||
name: opt.name,
|
||||
nameLocation: opt.location,
|
||||
nameGap: 24,
|
||||
nameTextStyle: {
|
||||
fontWeight: 'bold',
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const chartTimeline = document.getElementById('timeline');
|
||||
const cTimeline = echarts.init(chartTimeline);
|
||||
|
||||
const cTimelineOptions = {
|
||||
grid: {
|
||||
show: false,
|
||||
},
|
||||
timeline: {
|
||||
data: {!! $extractiondates !!},
|
||||
data: sharedOptions.extractiondates,
|
||||
playInterval: 1000,
|
||||
axisType: 'time',
|
||||
left: 8,
|
||||
|
@ -136,7 +136,7 @@ const cCapacityMonthlyOptions = {
|
|||
tooltip: sharedOptions.basic.tooltip,
|
||||
timeline: {
|
||||
show: false,
|
||||
data: {!! $extractiondates !!},
|
||||
data: sharedOptions.extractiondates,
|
||||
axisType: 'time',
|
||||
},
|
||||
grid: {
|
||||
|
@ -148,7 +148,7 @@ const cCapacityMonthlyOptions = {
|
|||
xAxis: {
|
||||
type: 'value',
|
||||
max: 100,
|
||||
name: 'Auslastung in %',
|
||||
name: 'Verfügbarkeit in %',
|
||||
nameLocation: 'center',
|
||||
nameGap: 25,
|
||||
nameTextStyle: {
|
||||
|
@ -159,7 +159,7 @@ const cCapacityMonthlyOptions = {
|
|||
type: 'category',
|
||||
},
|
||||
options: [
|
||||
@foreach ($capacitiesMonthly as $cM)
|
||||
@foreach ($diagramsOptions['capacityMonthly']['options'] as $cM)
|
||||
{
|
||||
yAxis: {
|
||||
data: {!! json_encode($cM['months']) !!}
|
||||
|
@ -185,7 +185,7 @@ const cCapacityDailyOptions = {
|
|||
tooltip: sharedOptions.basic.tooltip,
|
||||
timeline: {
|
||||
show: false,
|
||||
data: {!! $extractiondates !!},
|
||||
data: sharedOptions.extractiondates,
|
||||
axisType: 'time',
|
||||
},
|
||||
grid: {
|
||||
|
@ -197,7 +197,7 @@ const cCapacityDailyOptions = {
|
|||
xAxis: {
|
||||
type: 'value',
|
||||
max: 100,
|
||||
name: 'Auslastung in %',
|
||||
name: 'Verfügbarkeit in %',
|
||||
nameLocation: 'center',
|
||||
nameGap: 25,
|
||||
nameTextStyle: {
|
||||
|
@ -208,7 +208,7 @@ const cCapacityDailyOptions = {
|
|||
type: 'category',
|
||||
},
|
||||
options: [
|
||||
@foreach ($capacitiesDaily as $cD)
|
||||
@foreach ($diagramsOptions['capacityDaily']['options'] as $cD)
|
||||
{
|
||||
yAxis: {
|
||||
data: {!! json_encode($cD['weekdays']) !!}
|
||||
|
@ -233,7 +233,7 @@ const cCapacity = echarts.init(chartCapacity);
|
|||
const cCapacityOptions = {
|
||||
color: sharedOptions.basic.color,
|
||||
legend: {
|
||||
data: ['Auslastung Property', 'Auslastung {{ $base['region_name'] }}', 'Auslastung alle Regionen']
|
||||
show: true
|
||||
},
|
||||
tooltip: {
|
||||
trigger: 'axis',
|
||||
|
@ -249,8 +249,8 @@ const cCapacityOptions = {
|
|||
xAxis: {
|
||||
type: 'category',
|
||||
boundaryGap: false,
|
||||
data: {!! json_encode($propertyCapacities['dates']) !!},
|
||||
name: 'Zeitpunkt Scraping',
|
||||
data: {!! $diagramsOptions['capacities']['xAxis']['data'] !!},
|
||||
name: 'Zeitpunkt Beobachtung',
|
||||
nameLocation: 'center',
|
||||
nameGap: 24,
|
||||
nameTextStyle: {
|
||||
|
@ -261,7 +261,7 @@ const cCapacityOptions = {
|
|||
type: 'value',
|
||||
min: 0,
|
||||
max: 100,
|
||||
name: 'Auslastung in Prozent',
|
||||
name: 'Verfügbarkeit in %',
|
||||
nameLocation: 'center',
|
||||
nameGap: 38,
|
||||
nameTextStyle: {
|
||||
|
@ -270,22 +270,22 @@ const cCapacityOptions = {
|
|||
},
|
||||
series: [
|
||||
{
|
||||
name: 'Auslastung Property',
|
||||
name: 'Verfügbarkeit Mietobjekt',
|
||||
type: 'line',
|
||||
symbolSize: 7,
|
||||
data: {!! json_encode($propertyCapacities['capacities']) !!}
|
||||
data: {!! $diagramsOptions['capacities']["series"][0]["data"] !!}
|
||||
},
|
||||
{
|
||||
name: 'Auslastung {{ $base['region_name'] }}',
|
||||
name: 'Verfügbarkeit {{ $base['region_name'] }}',
|
||||
type: 'line',
|
||||
symbolSize: 7,
|
||||
data: {!! json_encode($regionCapacities[0]) !!}
|
||||
data: {!! $diagramsOptions['capacities']["series"][1]["data"] !!}
|
||||
},
|
||||
{
|
||||
name: 'Auslastung alle Regionen',
|
||||
name: 'Verfügbarkeit alle Regionen',
|
||||
type: 'line',
|
||||
symbolSize: 7,
|
||||
data: {!! json_encode($regionCapacities[1]) !!}
|
||||
data: {!! $diagramsOptions['capacities']["series"][2]["data"] !!}
|
||||
}
|
||||
]
|
||||
};
|
||||
|
@ -299,7 +299,7 @@ const h2Belegung = document.getElementById('belegung-title');
|
|||
const cCalendarOptions = {
|
||||
timeline: {
|
||||
show: false,
|
||||
data: {!! json_encode($propertyCapacities['dates']) !!},
|
||||
data: sharedOptions.extractiondates,
|
||||
axisType: 'time',
|
||||
},
|
||||
visualMap: {
|
||||
|
@ -330,6 +330,9 @@ const cCalendarOptions = {
|
|||
right: 10,
|
||||
bottom: '65%',
|
||||
left: 50,
|
||||
dayLabel: {
|
||||
fontSize: 10
|
||||
}
|
||||
},
|
||||
{
|
||||
orient: 'horizontal',
|
||||
|
@ -338,6 +341,9 @@ const cCalendarOptions = {
|
|||
right: 10,
|
||||
bottom: '33%',
|
||||
left: 50,
|
||||
dayLabel: {
|
||||
fontSize: 10
|
||||
}
|
||||
},
|
||||
{
|
||||
orient: 'horizontal',
|
||||
|
@ -346,10 +352,13 @@ const cCalendarOptions = {
|
|||
right: 10,
|
||||
bottom: '1%',
|
||||
left: 50,
|
||||
dayLabel: {
|
||||
fontSize: 10
|
||||
}
|
||||
}
|
||||
],
|
||||
options: [
|
||||
@foreach ($calendar as $c)
|
||||
@foreach ($diagramsOptions['calendar']['series'] as $c)
|
||||
{
|
||||
series: [{
|
||||
type: 'heatmap',
|
||||
|
@ -431,7 +440,7 @@ function icon(id = 0){
|
|||
}
|
||||
|
||||
const markers = L.featureGroup([
|
||||
L.marker([{{ $base['check_data'] }}], {icon: icon(1)}),
|
||||
L.marker([{{ $base['latlng'] }}], {icon: icon(1)}),
|
||||
@foreach($neighbours as $n)
|
||||
L.marker([{{ $n['lat'] }}, {{ $n['lon'] }}], {icon: icon()}).bindPopup('<a href="/property/{{ $n['id'] }}">{{ $n['lat'] }}, {{ $n['lon'] }}</a>'),
|
||||
@endforeach
|
||||
|
|
|
@ -2,12 +2,12 @@
|
|||
@section('body-class', 'region')
|
||||
@section('header')
|
||||
<nav>
|
||||
<strong>{{ $region[0]['region_name'] }}</strong>
|
||||
<strong>{{ $region['name'] }}</strong>
|
||||
<ul>
|
||||
<li><a href="/">Start</a></li>
|
||||
@foreach($regions as $r)
|
||||
@if($r['region_id'] != $region_id)
|
||||
<li><a href="/region/{{ $r['region_id'] }}">{{ $r['region_name'] }}</a></li>
|
||||
@if($r['id'] != $regionId)
|
||||
<li><a href="/region/{{ $r['id'] }}">{{ $r['name'] }}</a></li>
|
||||
@endif
|
||||
@endforeach
|
||||
</ul>
|
||||
|
@ -19,20 +19,51 @@
|
|||
</article>
|
||||
<article class="header" style="grid-area: chart6;">
|
||||
<header>
|
||||
<h2 id="prediction-title">Gleitender Mittelwert für die Auslastung der Region</h2>
|
||||
<h2 id="prediction-title">Gleitender Mittelwert für die Verfügbarkeit der Region</h2>
|
||||
<button popovertarget="chart-prediction-popover"></button>
|
||||
<div id="chart-prediction-popover" popover>
|
||||
<h2>Gleitender Mittelwert für die Verfügbarkeit der Region</h2>
|
||||
<p>Das Diagramm...</p>
|
||||
<ul>
|
||||
<li>X-Achse: Zeitpunkt der Beobachtung</li>
|
||||
<li>Y-Achse: Verfügbarkeit einer Region. 0% = Alle Mietobjekte der Region sind komplett ausgebucht; 100% = Alle Mietobjekte der Region können zu allen verfügbaren Daten gebucht werden. </li>
|
||||
</ul>
|
||||
</div>
|
||||
</header>
|
||||
<div id="chart-prediction"></div>
|
||||
</article>
|
||||
<article class="header" style="grid-area: chart1;">
|
||||
<header>
|
||||
<h2 id="belegung-title">Auslastung aller Mietobjekte über Gesamte Zeit der Region</h2>
|
||||
<h2 id="belegung-title">Verfügbarkeit aller Mietobjekte der Region über gesamten beobachteten Zeitraum</h2>
|
||||
<button popovertarget="popup-heat"></button><div popover id="popup-heat">
|
||||
<h2>Verfügbarkeit aller Mietobjekte der Region über gesamten beobachteten Zeitraum</h2>
|
||||
<p>
|
||||
Das Diagramm zeigt die Verfügbarkeit aller Mietobjekte der Region zu allen beobachteten Zeitpunkten.
|
||||
</p>
|
||||
<ul>
|
||||
<li>X-Achse: Zeitpunkt Beobachtung.</li>
|
||||
<li>Y-Achse: Mietobjekte.</li>
|
||||
<li>Kategorien: 0% = Das Mietobjekt ist komplett Ausgebucht; 100% = Das Mietobjekt kann zu allen Verfügbaren Daten gebucht werden.</li>
|
||||
</ul>
|
||||
|
||||
<h3>Berrechnung Verfügbarkeit</h3>
|
||||
<p>Die Verfügbarkeit eines Mietobjekt errechnet sich folgendermassen:</p>
|
||||
<p class="formula">
|
||||
Verfügbarkeit = (100 / (Anzahl Buchungsdaten * 2)) * Summe Status
|
||||
</p>
|
||||
<ul>
|
||||
<li>Status: Jeder verfügbare Kalendertag kann den Status «Nicht Verfügbar» (0), «Verfügbar (kein Anreisetag)» (1) oder «Verfügbar» (2) aufweisen.</li>
|
||||
<li>Anzahl Buchungsdaten: Die Summe aller angebotenen Buchungsdaten mit zwei multipliziert (= Alle Buchungdaten haben den Status «Verfügbar»)</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div>
|
||||
</header>
|
||||
<div id="chart-heatmap"></div>
|
||||
</article>
|
||||
<article class="header" style="grid-area: chart3;">
|
||||
<header>
|
||||
<h2>
|
||||
Auslastung Region nach Monat am <span class="date">{{ $startDate }}</span>
|
||||
Verfügbarkeit nach Monat am <span class="date">{{ $startDate }}</span>
|
||||
</h2>
|
||||
</header>
|
||||
<div id="chart-capacity-monthly">
|
||||
|
@ -41,12 +72,16 @@
|
|||
<article class="header" style="grid-area: chart2;">
|
||||
<header>
|
||||
<h2>
|
||||
Entwicklung der Auslastung
|
||||
Entwicklung der Verfügbarkeit
|
||||
</h2>
|
||||
<button popovertarget="chart-capacity-popover"></button>
|
||||
<div id="chart-capacity-popover" popover>
|
||||
<h2>Erkläung zum Diagramm «Entwicklung der Auslastung»</h2>
|
||||
<p>Das Liniendiagramm zeigt die Auslastung von Regionen. 100 % = die Region ist kaum ausgelastet; 100 % der Mietobjekte sind verfügbar. 0 % = Die Region ist komplett ausgelastet; Es stehen keine Mietangebote zur Verfügung.</p>
|
||||
<h2>Entwicklung der Verfügbarkeit</h2>
|
||||
<p>Das Liniendiagramm zeigt die Entwicklung Verfügbarkeit der Region im Vergleich zu allen Regionen an.</p>
|
||||
<ul>
|
||||
<li>X-Achse: Zeitpunkt der Beobachtung</li>
|
||||
<li>Y-Achse: Verfügbarkeit einer Region. 0% = Alle Mietobjekte der Region sind komplett ausgebucht; 100% = Alle Mietobjekte der Region können zu allen verfügbaren Daten gebucht werden. </li>
|
||||
</ul>
|
||||
</div>
|
||||
</header>
|
||||
<div id="chart-capacity"></div>
|
||||
|
@ -54,7 +89,7 @@
|
|||
<article class="header" style="grid-area: chart4;">
|
||||
<header>
|
||||
<h2>
|
||||
Auslastung Wochentage am <span class="date">{{ $startDate }}</span>
|
||||
Verfügbarkeit nach Wochentage am <span class="date">{{ $startDate }}</span>
|
||||
</h2>
|
||||
</header>
|
||||
<div id="chart-capacity-daily">
|
||||
|
@ -64,7 +99,7 @@
|
|||
|
||||
const sharedOptions = {
|
||||
basic: {
|
||||
color: {!! $chartOptions['colors'] !!},
|
||||
color: {!! $diagramsOptions['shared']['colors'] !!},
|
||||
grid: {
|
||||
top: 20,
|
||||
left: 60,
|
||||
|
@ -74,7 +109,7 @@ const sharedOptions = {
|
|||
tooltip: {
|
||||
show: true,
|
||||
trigger: 'axis',
|
||||
valueFormatter: (value) => value.toFixed(2)+' %'
|
||||
valueFormatter: (value) => value == null ? 'N/A' : value.toFixed(2)+' %'
|
||||
},
|
||||
name: (opt) => {
|
||||
return {
|
||||
|
@ -108,8 +143,8 @@ const cCapacityOptions = {
|
|||
xAxis: {
|
||||
type: 'category',
|
||||
boundaryGap: false,
|
||||
data: {!! json_encode($regionCapacities['region']['dates']) !!},
|
||||
name: 'Zeitpunkt Scraping',
|
||||
data: {!! $diagramsOptions['capacity']['xAxis']['data'] !!},
|
||||
name: 'Zeitpunkt Beobachtung',
|
||||
nameLocation: 'center',
|
||||
nameGap: 24,
|
||||
nameTextStyle: {
|
||||
|
@ -120,7 +155,7 @@ const cCapacityOptions = {
|
|||
type: 'value',
|
||||
min: 0,
|
||||
max: 100,
|
||||
name: 'Auslastung in %',
|
||||
name: 'Verfügbarkeit in %',
|
||||
nameLocation: 'center',
|
||||
nameGap: 38,
|
||||
nameTextStyle: {
|
||||
|
@ -128,16 +163,16 @@ const cCapacityOptions = {
|
|||
}
|
||||
},
|
||||
series: [{
|
||||
name: 'Auslastung alle Regionen',
|
||||
name: 'Verfügbarkeit alle Regionen',
|
||||
type: 'line',
|
||||
symbolSize: 7,
|
||||
data: {!! json_encode($regionCapacities['all']['capacities']) !!}
|
||||
data: {!! $diagramsOptions['capacity']['series']['all']['data'] !!}
|
||||
},
|
||||
{
|
||||
name: 'Auslastung Region',
|
||||
name: 'Verfügbarkeit Region',
|
||||
type: 'line',
|
||||
symbolSize: 7,
|
||||
data: {!! json_encode($regionCapacities['region']['capacities']) !!}
|
||||
data: {!! $diagramsOptions['capacity']['series']['region']['data'] !!}
|
||||
}]
|
||||
};
|
||||
|
||||
|
@ -149,7 +184,7 @@ const cCapacityMonthly = echarts.init(chartCapacityMonthly);
|
|||
const cCapacityMonthlyOptions = {
|
||||
timeline: {
|
||||
show: false,
|
||||
data: {!! json_encode($regionCapacities['region']['dates']) !!},
|
||||
data: {!! $diagramsOptions['capacity']['xAxis']['data'] !!},
|
||||
axisType: 'time',
|
||||
},
|
||||
grid: {
|
||||
|
@ -161,7 +196,7 @@ const cCapacityMonthlyOptions = {
|
|||
xAxis: {
|
||||
type: 'value',
|
||||
max: 100,
|
||||
name: 'Auslastung in %',
|
||||
name: 'Verfügbarkeit in %',
|
||||
nameLocation: 'center',
|
||||
nameGap: 25,
|
||||
nameTextStyle: {
|
||||
|
@ -173,7 +208,7 @@ const cCapacityMonthlyOptions = {
|
|||
},
|
||||
tooltip: sharedOptions.basic.tooltip,
|
||||
options: [
|
||||
@foreach ($regionCapacities['region_monthly'] as $m)
|
||||
@foreach ($diagramsOptions['capacityMonthly']['options'] as $m)
|
||||
{
|
||||
yAxis: {
|
||||
data: {!! json_encode($m['months']) !!}
|
||||
|
@ -198,7 +233,7 @@ const cCapacityDaily = echarts.init(chartCapacityDaily);
|
|||
const cCapacityDailyOptions = {
|
||||
timeline: {
|
||||
show: false,
|
||||
data: {!! json_encode($regionCapacities['region']['dates']) !!},
|
||||
data: {!! $diagramsOptions['capacity']['xAxis']['data'] !!},
|
||||
axisType: 'time',
|
||||
},
|
||||
tooltip: sharedOptions.basic.tooltip,
|
||||
|
@ -211,7 +246,7 @@ const cCapacityDailyOptions = {
|
|||
xAxis: {
|
||||
type: 'value',
|
||||
max: 100,
|
||||
name: 'Auslastung in %',
|
||||
name: 'Verfügbarkeit in %',
|
||||
nameLocation: 'center',
|
||||
nameGap: 25,
|
||||
nameTextStyle: {
|
||||
|
@ -222,7 +257,7 @@ const cCapacityDailyOptions = {
|
|||
type: 'category',
|
||||
},
|
||||
options: [
|
||||
@foreach ($regionCapacities['region_daily'] as $d)
|
||||
@foreach ($diagramsOptions['capacityDaily']['options'] as $d)
|
||||
{
|
||||
yAxis: {
|
||||
data: {!! json_encode($d['weekdays']) !!}
|
||||
|
@ -245,10 +280,10 @@ const chartPrediction = document.getElementById('chart-prediction');
|
|||
const cPrediction = echarts.init(chartPrediction);
|
||||
|
||||
const cPredictionOptions = {
|
||||
color: sharedOptions.basic.color,
|
||||
color: [sharedOptions.basic.color[0], sharedOptions.basic.color[4], sharedOptions.basic.color[5]],
|
||||
timeline: {
|
||||
show: false,
|
||||
data: {!! json_encode($regionCapacities['region']['dates']) !!},
|
||||
data: {!! $diagramsOptions['capacity']['xAxis']['data'] !!},
|
||||
axisType: 'time',
|
||||
replaceMerge: ['graphic', 'series']
|
||||
},
|
||||
|
@ -266,7 +301,7 @@ const cPredictionOptions = {
|
|||
xAxis: {
|
||||
type: 'category',
|
||||
boundaryGap: false,
|
||||
name: 'Zeitpunkt Scraping',
|
||||
name: 'Zeitpunkt Beobachtung',
|
||||
nameLocation: 'center',
|
||||
nameGap: 24,
|
||||
nameTextStyle: {
|
||||
|
@ -277,7 +312,7 @@ const cPredictionOptions = {
|
|||
type: 'value',
|
||||
min: 0,
|
||||
max: 100,
|
||||
name: 'Auslastung in %',
|
||||
name: 'Verfügbarkeit in %',
|
||||
nameLocation: 'center',
|
||||
nameGap: 38,
|
||||
nameTextStyle: {
|
||||
|
@ -285,7 +320,7 @@ const cPredictionOptions = {
|
|||
}
|
||||
},
|
||||
options: [
|
||||
@foreach ($predictions as $p)
|
||||
@foreach ($diagramsOptions['predictions']['options'] as $p)
|
||||
@if($p === null)
|
||||
{
|
||||
graphic: {
|
||||
|
@ -315,21 +350,27 @@ const cPredictionOptions = {
|
|||
series: [
|
||||
{
|
||||
name: 'Gleitender Mittelwert',
|
||||
showSymbol: false,
|
||||
connectNulls: true,
|
||||
type: 'line',
|
||||
symbolSize: 7,
|
||||
data: {!! json_encode($p['movAvg']) !!}
|
||||
data: {!! json_encode($p['capacities_moving_average']) !!}
|
||||
},
|
||||
{
|
||||
name: 'Daten vom ...',
|
||||
name: 'Ausgangsdaten',
|
||||
showSymbol: false,
|
||||
connectNulls: true,
|
||||
type: 'line',
|
||||
symbolSize: 7,
|
||||
data: {!! json_encode($p['cap_earlierTimeframe']) !!}
|
||||
data: {!! json_encode($p['capacities_timeframe_before']) !!}
|
||||
},
|
||||
{
|
||||
name: 'Daten vom',
|
||||
name: 'Vergleichsdaten',
|
||||
showSymbol: false,
|
||||
connectNulls: true,
|
||||
type: 'line',
|
||||
symbolSize: 7,
|
||||
data: {!! json_encode($p['cap_laterTimeframe']) !!}
|
||||
data: {!! json_encode($p['capacities_timeframe_after']) !!}
|
||||
}
|
||||
]
|
||||
},
|
||||
|
@ -348,10 +389,13 @@ const cHeatmapOptions = {
|
|||
position: 'top'
|
||||
},
|
||||
grid: {
|
||||
show: true,
|
||||
borderWidth: 1,
|
||||
borderColor: '#aaa',
|
||||
top: 30,
|
||||
right: 45,
|
||||
bottom: 50,
|
||||
left: 5
|
||||
bottom: 70,
|
||||
left: 30
|
||||
},
|
||||
dataZoom: [{
|
||||
type: 'slider'
|
||||
|
@ -362,23 +406,52 @@ const cHeatmapOptions = {
|
|||
yAxisIndex: 0,
|
||||
}],
|
||||
xAxis: {
|
||||
show: false,
|
||||
name: 'Kurzzeitmietobjekt',
|
||||
show: true,
|
||||
name: 'Zeitpunkt Beobachtung',
|
||||
type: 'category',
|
||||
data: {!! json_encode($regionPropertiesCapacities['scrapeDates']) !!},
|
||||
data: {!! $diagramsOptions['heatmap']['xAxis']['data'] !!},
|
||||
splitArea: {
|
||||
show: false
|
||||
},
|
||||
splitArea: {
|
||||
show: false
|
||||
},
|
||||
axisLabel: {
|
||||
show: true,
|
||||
show: false,
|
||||
},
|
||||
axisTick: {
|
||||
show: false,
|
||||
},
|
||||
axisLine: {
|
||||
show: false,
|
||||
},
|
||||
nameLocation: 'center',
|
||||
nameGap: 10,
|
||||
nameTextStyle: {
|
||||
fontWeight: 'bold',
|
||||
}
|
||||
},
|
||||
yAxis: {
|
||||
show: false,
|
||||
show: true,
|
||||
type: 'category',
|
||||
data: {!! json_encode($regionPropertiesCapacities['property_ids']) !!},
|
||||
data: {!! $diagramsOptions['heatmap']['yAxis']['data'] !!},
|
||||
splitArea: {
|
||||
show: true
|
||||
show: false
|
||||
},
|
||||
axisTick: {
|
||||
show: false,
|
||||
},
|
||||
axisLine: {
|
||||
show: false,
|
||||
},
|
||||
axisLabel: {
|
||||
show: false,
|
||||
},
|
||||
name: 'Mietobjekte',
|
||||
nameLocation: 'center',
|
||||
nameGap: 10,
|
||||
nameTextStyle: {
|
||||
fontWeight: 'bold',
|
||||
}
|
||||
},
|
||||
visualMap: {
|
||||
|
@ -398,16 +471,16 @@ const cHeatmapOptions = {
|
|||
},
|
||||
series: [
|
||||
{
|
||||
name: 'Auslastung',
|
||||
name: 'Verfügbarkeit',
|
||||
type: 'heatmap',
|
||||
blurSize: 0,
|
||||
data: {!! json_encode($regionPropertiesCapacities['values']) !!},
|
||||
data: {!! $diagramsOptions['heatmap']['series']['data'] !!},
|
||||
label: {
|
||||
show: false
|
||||
},
|
||||
tooltip: {
|
||||
formatter: (data) => {
|
||||
return `Kurzzeitmietobjekte-ID: ${data.data[1]}<br />Datum Scraping: ${data.data[0]}<br/>Auslastung: ${data.data[2].toFixed(2)} %`
|
||||
return `Kurzzeitmietobjekte-ID: ${data.data[1]}<br />Beobachtungszeitpunkt: ${data.data[0]}<br/>Verfügbarkeit: ${data.data[2].toFixed(2)} %`
|
||||
},
|
||||
},
|
||||
emphasis: {
|
||||
|
@ -430,7 +503,7 @@ const cTimelineOptions = {
|
|||
show: false,
|
||||
},
|
||||
timeline: {
|
||||
data: {!! json_encode($regionCapacities['region']['dates']) !!},
|
||||
data: {!! $diagramsOptions['capacity']['xAxis']['data'] !!},
|
||||
playInterval: 2000,
|
||||
axisType: 'time',
|
||||
left: 8,
|
||||
|
|
|
@ -1,8 +0,0 @@
|
|||
<?php
|
||||
|
||||
use Illuminate\Foundation\Inspiring;
|
||||
use Illuminate\Support\Facades\Artisan;
|
||||
|
||||
Artisan::command('inspire', function () {
|
||||
$this->comment(Inspiring::quote());
|
||||
})->purpose('Display an inspiring quote')->hourly();
|
|
@ -7,74 +7,124 @@ use App\Chart;
|
|||
Route::get('/', function () {
|
||||
|
||||
$regionBase = Api::regionBase(-1);
|
||||
$regionBase[] = ['region_name' => 'Alle Regionen', 'region_id' => -1];
|
||||
$regionPropertyCapacities = Api::regionPropertiesCapacities(-1);
|
||||
$regionPropertiesCapacities = Api::regionPropertiesCapacities(-1);
|
||||
$propertiesGrowth = Api::propertiesGrowth();
|
||||
$propsPerRegion = Api::propertiesPerRegion();
|
||||
$propsPerRegionName = [];
|
||||
$propsPerRegionCounts = [];
|
||||
$propsPerRegionId = [];
|
||||
$regions = Api::regions()['regions'];
|
||||
$propertiesPerRegion = $regions;
|
||||
$regions[] = ['name' => 'Alle Regionen', 'id' => -1];
|
||||
$propertiesGeo = Api::propertiesGeo()['properties'];
|
||||
|
||||
foreach ($propsPerRegion as $el) {
|
||||
$propsPerRegionName[] = $el['name'];
|
||||
$propsPerRegionId[] = $el['id'];
|
||||
$propsPerRegionCounts[] = $el['count_properties'];
|
||||
$heatmapValues = [];
|
||||
|
||||
foreach ($regionPropertiesCapacities['values'] as $el) {
|
||||
$heatmapValues[] = array_values($el);
|
||||
}
|
||||
|
||||
$chartOptions = [
|
||||
'colors' => Chart::colors()
|
||||
$diagramsOptions = [
|
||||
"shared" => [
|
||||
"extractionDates" => json_encode($regionPropertiesCapacities['dates']),
|
||||
"colors" => Chart::colors()
|
||||
],
|
||||
"heatmap" => [
|
||||
"yAxis" => [
|
||||
"data" => json_encode($regionPropertiesCapacities['property_ids'])
|
||||
],
|
||||
"series" => [
|
||||
"data" => json_encode($heatmapValues)
|
||||
]
|
||||
],
|
||||
"propertiesPerRegion" => [
|
||||
"yAxis" => [
|
||||
"data" => json_encode(array_column($propertiesPerRegion, 'count_properties'))
|
||||
],
|
||||
"xAxis" => [
|
||||
"data" => json_encode(array_column($propertiesPerRegion, 'name'))
|
||||
]
|
||||
],
|
||||
"extractions" => [
|
||||
"series" => $propertiesGrowth,
|
||||
]
|
||||
];
|
||||
|
||||
$propertiesGeo = Api::propertiesGeo();
|
||||
|
||||
return view('overview', [
|
||||
"regions" => $regionBase,
|
||||
"regionPropertiesCapacities" => $regionPropertyCapacities,
|
||||
"regions" => $regions,
|
||||
"region" => $regionBase,
|
||||
"diagramsOptions" => $diagramsOptions,
|
||||
"geo" => $propertiesGeo,
|
||||
"growth" => $propertiesGrowth,
|
||||
"chartOptions" => $chartOptions,
|
||||
"propsPerRegion" => [json_encode($propsPerRegionId), json_encode($propsPerRegionName), json_encode($propsPerRegionCounts)]]);
|
||||
|
||||
]);
|
||||
});
|
||||
|
||||
Route::get('/region/{id}', function (int $id) {
|
||||
|
||||
$regionBaseAll = Api::regionBase(-1);
|
||||
$regionBaseAll[] = ['region_name' => 'Alle Regionen', 'region_id' => -1];
|
||||
$regionBaseRegion = $id >= 0 ? Api::regionBase($id) : [['region_name' => 'Alle Regionen']];
|
||||
|
||||
$regions = Api::regions()['regions'];
|
||||
$regions[] = ['name' => 'Alle Regionen', 'id' => -1];
|
||||
$region = $id >= 0 ? Api::regionBase($id) : ['name' => 'Alle Regionen'];
|
||||
$regionPropertiesCapacities = Api::regionPropertiesCapacities($id);
|
||||
$regionCapacitiesRegion = Api::regionCapacities($id);
|
||||
$regionCapacitiesAll = Api::regionCapacities(-1);
|
||||
|
||||
$regionCapacitiesMonthly = [];
|
||||
$regionCapacitiesDaily = [];
|
||||
$regionPredictions = [];
|
||||
|
||||
$heatmapValues = [];
|
||||
|
||||
foreach ($regionPropertiesCapacities['values'] as $el) {
|
||||
$heatmapValues[] = array_values($el);
|
||||
}
|
||||
|
||||
foreach ($regionCapacitiesRegion['dates'] as $date) {
|
||||
$regionCapacitiesMonthly[] = Api::regionCapacitiesMonthly($id, $date);
|
||||
$regionCapacitiesDaily[] = Api::regionCapacitiesDaily($id, $date);
|
||||
$regionPredictions[] = Api::regionMovingAverage($id, $date);
|
||||
}
|
||||
|
||||
$chartOptions = [
|
||||
'colors' => Chart::colors()
|
||||
];
|
||||
|
||||
$regionCapacities = [
|
||||
'all' => $regionCapacitiesAll,
|
||||
'region' => $regionCapacitiesRegion,
|
||||
'region_monthly' => $regionCapacitiesMonthly,
|
||||
'region_daily' => $regionCapacitiesDaily
|
||||
|
||||
$diagramsOptions = [
|
||||
"shared" => [
|
||||
"extractionDates" => json_encode($regionPropertiesCapacities['dates']),
|
||||
"colors" => Chart::colors()
|
||||
],
|
||||
"heatmap" => [
|
||||
"xAxis" => [
|
||||
"data" => json_encode($regionPropertiesCapacities['dates'])
|
||||
],
|
||||
"yAxis" => [
|
||||
"data" => json_encode($regionPropertiesCapacities['property_ids'])
|
||||
],
|
||||
"series" => [
|
||||
"data" => json_encode($heatmapValues)
|
||||
]
|
||||
],
|
||||
"predictions" => [
|
||||
"options" => $regionPredictions,
|
||||
],
|
||||
"capacityMonthly" => [
|
||||
"options" => $regionCapacitiesMonthly,
|
||||
],
|
||||
"capacityDaily" => [
|
||||
"options" => $regionCapacitiesDaily,
|
||||
],
|
||||
"capacity" => [
|
||||
"xAxis" => [
|
||||
"data" => json_encode($regionCapacitiesRegion['dates'])
|
||||
],
|
||||
"series" => [
|
||||
"all" => [
|
||||
"data" => json_encode($regionCapacitiesAll['capacities'])
|
||||
],
|
||||
"region" => [
|
||||
"data" => json_encode($regionCapacitiesRegion['capacities'])
|
||||
]
|
||||
]
|
||||
]
|
||||
];
|
||||
|
||||
return view('region', [
|
||||
'chartOptions' => $chartOptions,
|
||||
'diagramsOptions' => $diagramsOptions,
|
||||
'startDate' => $regionCapacitiesRegion['dates'][0],
|
||||
'regions' => $regionBaseAll,
|
||||
'region' => $regionBaseRegion,
|
||||
'region_id' => $id,
|
||||
'regionCapacities' => $regionCapacities,
|
||||
'regions' => $regions,
|
||||
'region' => $region,
|
||||
'regionId' => $id,
|
||||
'regionPropertiesCapacities' => $regionPropertiesCapacities,
|
||||
'predictions' => $regionPredictions]);
|
||||
|
||||
|
@ -83,43 +133,48 @@ Route::get('/region/{id}', function (int $id) {
|
|||
|
||||
Route::get('/property/{id}', function (int $id) {
|
||||
|
||||
$chartOptions = [
|
||||
'colors' => Chart::colors()
|
||||
];
|
||||
$regionBaseAll = Api::regionBase(-1);
|
||||
$regionBaseAll[] = ['region_name' => 'Alle Regionen', 'region_id' => -1];
|
||||
$propertyBase = Api::propertyBase($id);
|
||||
$calendars = Api::propertyExtractions($id);
|
||||
|
||||
$regions = Api::regions()['regions'];
|
||||
$regions[] = ['name' => 'Alle Regionen', 'id' => -1];
|
||||
|
||||
$base = Api::propertyBase($id);
|
||||
$calendars = Api::propertyExtractions($id)['extractions'];
|
||||
$propertyCapacities = Api::propertyCapacities($id);
|
||||
$propertyNeighbours = Api::propertyNeighbours($id);
|
||||
$regionCapacitiesRegion = Api::regionCapacities($propertyBase[0]['region_id']);
|
||||
$propertyNeighbours = Api::propertyNeighbours($id)['neighbours'];
|
||||
$regionCapacitiesRegion = Api::regionCapacities($base['region_id']);
|
||||
$regionCapacitiesAll = Api::regionCapacities(-1);
|
||||
$regionCapacities = [[],[]];
|
||||
|
||||
$propertyCapacitiesMonthly = [];
|
||||
$propertyCapacitiesDaily = [];
|
||||
|
||||
foreach ($propertyCapacities['dates'] as $date) {
|
||||
$propertyCapacitiesMonthly[] = Api::propertyCapacitiesMonthly($id, $date);
|
||||
$propertyCapacitiesDaily[] = Api::propertyCapacitiesDaily($id, $date);
|
||||
}
|
||||
|
||||
// filter out all date, which were not scraped for the property
|
||||
foreach ($regionCapacitiesAll['dates'] as $index => $date) {
|
||||
if(in_array($date, $propertyCapacities['dates'])){
|
||||
$regionCapacities[0][] = $regionCapacitiesAll['capacities'][$index];
|
||||
if($propertyCapacities){
|
||||
foreach ($propertyCapacities['dates'] as $date) {
|
||||
$propertyCapacitiesMonthly[] = Api::propertyCapacitiesMonthly($id, $date);
|
||||
$propertyCapacitiesDaily[] = Api::propertyCapacitiesDaily($id, $date);
|
||||
}
|
||||
}
|
||||
|
||||
foreach ($regionCapacitiesRegion['dates'] as $index => $date) {
|
||||
if(in_array($date, $propertyCapacities['dates'])){
|
||||
$regionCapacities[1][] = $regionCapacitiesRegion['capacities'][$index];
|
||||
// filter out all date, which were not scraped for the property
|
||||
foreach ($regionCapacitiesAll['dates'] as $index => $date) {
|
||||
if(in_array($date, $propertyCapacities['dates'])){
|
||||
$regionCapacities[0][] = $regionCapacitiesAll['capacities'][$index];
|
||||
}
|
||||
}
|
||||
|
||||
foreach ($regionCapacitiesRegion['dates'] as $index => $date) {
|
||||
if(in_array($date, $propertyCapacities['dates'])){
|
||||
$regionCapacities[1][] = $regionCapacitiesRegion['capacities'][$index];
|
||||
}
|
||||
}
|
||||
}else{
|
||||
return view('property-nodata', [
|
||||
'base' => $base,
|
||||
'regions' => $regions,
|
||||
]);
|
||||
}
|
||||
|
||||
// prepare data for calendar chart
|
||||
$data = [];
|
||||
$dates = [];
|
||||
$calendarData = [];
|
||||
|
||||
foreach ($calendars as $el) {
|
||||
|
||||
|
@ -130,21 +185,41 @@ Route::get('/property/{id}', function (int $id) {
|
|||
$series[] = [$date, $status];
|
||||
}
|
||||
|
||||
$data[] = $series;
|
||||
$calendarData[] = $series;
|
||||
|
||||
}
|
||||
|
||||
$diagramsOptions = [
|
||||
"shared" => [
|
||||
"colors" => Chart::colors(),
|
||||
"extractiondates" => json_encode($propertyCapacities['dates'])
|
||||
],
|
||||
"calendar" => [
|
||||
"series" => $calendarData
|
||||
],
|
||||
"capacities" => [
|
||||
"xAxis" => [
|
||||
"data" => json_encode($propertyCapacities['dates'])
|
||||
],
|
||||
"series" => [
|
||||
["data" => json_encode($propertyCapacities['capacities'])],
|
||||
["data" => json_encode($regionCapacities[0])],
|
||||
["data" => json_encode($regionCapacities[1])],
|
||||
]
|
||||
],
|
||||
"capacityMonthly" => [
|
||||
"options" => $propertyCapacitiesMonthly,
|
||||
],
|
||||
"capacityDaily" => [
|
||||
"options" => $propertyCapacitiesDaily,
|
||||
],
|
||||
];
|
||||
|
||||
return view('property', [
|
||||
'chartOptions' => $chartOptions,
|
||||
'diagramsOptions' => $diagramsOptions,
|
||||
'startDate' => $propertyCapacities['dates'][0],
|
||||
'base' => $propertyBase[0],
|
||||
'regions' => $regionBaseAll,
|
||||
'extractiondates' => json_encode($propertyCapacities['dates']),
|
||||
'calendar' => $data,
|
||||
'propertyCapacities' => $propertyCapacities,
|
||||
'capacitiesMonthly' => $propertyCapacitiesMonthly,
|
||||
'capacitiesDaily' => $propertyCapacitiesDaily,
|
||||
'regionCapacities' => $regionCapacities,
|
||||
'base' => $base,
|
||||
'regions' => $regions,
|
||||
'neighbours' => $propertyNeighbours
|
||||
]);
|
||||
|
||||
|
|
|
@ -1,117 +1,141 @@
|
|||
<mxfile host="app.diagrams.net" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36" version="26.0.5">
|
||||
<mxfile host="app.diagrams.net" agent="Mozilla/5.0 (X11; Linux x86_64; rv:134.0) Gecko/20100101 Firefox/134.0" version="26.0.6">
|
||||
<diagram name="Seite-1" id="WNMV8rePnVf-2Vz_xhjt">
|
||||
<mxGraphModel dx="1688" dy="1050" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
|
||||
<mxGraphModel dx="1937" dy="1185" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
|
||||
<root>
|
||||
<mxCell id="0" />
|
||||
<mxCell id="1" parent="0" />
|
||||
<mxCell id="e6qn9whkbaCBCFCjUvdY-7" value="" style="rounded=0;whiteSpace=wrap;html=1;strokeColor=none;fillColor=#F5F5F5;" vertex="1" parent="1">
|
||||
<mxGeometry x="10" y="420" width="1070" height="690" as="geometry" />
|
||||
</mxCell>
|
||||
<object placeholders="1" c4Name="ETL" c4Type="ContainerScopeBoundary" c4Application="Component" label="<font style="font-size: 16px"><b><div style="text-align: left">%c4Name%</div></b></font><div style="text-align: left">[%c4Application%]</div>" id="0Mexl9jQAquWokRCgHYt-11">
|
||||
<mxCell style="rounded=1;fontSize=11;whiteSpace=wrap;html=1;dashed=1;arcSize=20;fillColor=default;strokeColor=#666666;fontColor=#333333;labelBackgroundColor=none;align=left;verticalAlign=bottom;labelBorderColor=none;spacingTop=0;spacing=10;dashPattern=8 4;metaEdit=1;rotatable=0;perimeter=rectanglePerimeter;noLabel=0;labelPadding=0;allowArrows=0;connectable=0;expand=0;recursiveResize=0;editable=1;pointerEvents=0;absoluteArcSize=1;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" parent="1" vertex="1">
|
||||
<mxGeometry x="30" y="440" width="1030" height="500" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<object placeholders="1" c4Name="Datenbank Aggregation" c4Type="Container" c4Technology="MySQL" c4Description="Datenbank welche während Aggregation verwendet wurde." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%:&nbsp;%c4Technology%]</div><br><div><font style="font-size: 11px"><font color="#E6E6E6">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-1">
|
||||
<mxCell style="shape=cylinder3;size=15;whiteSpace=wrap;html=1;boundedLbl=1;rounded=0;labelBackgroundColor=none;fillColor=#23A2D9;fontSize=12;fontColor=#ffffff;align=center;strokeColor=#0E7DAD;metaEdit=1;points=[[0.5,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.5,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];resizable=0;" vertex="1" parent="1">
|
||||
<mxCell style="shape=cylinder3;size=15;whiteSpace=wrap;html=1;boundedLbl=1;rounded=0;labelBackgroundColor=none;fillColor=#23A2D9;fontSize=12;fontColor=#ffffff;align=center;strokeColor=#0E7DAD;metaEdit=1;points=[[0.5,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.5,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];resizable=0;" parent="1" vertex="1">
|
||||
<mxGeometry x="40" y="100" width="240" height="120" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<object placeholders="1" c4Name="Datenbank Analyse" c4Type="Container" c4Technology="DuckDB" c4Description="Datenbank, welcher für die Analysen verwendet wurden." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%:&nbsp;%c4Technology%]</div><br><div><font style="font-size: 11px"><font color="#E6E6E6">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-2">
|
||||
<mxCell style="shape=cylinder3;size=15;whiteSpace=wrap;html=1;boundedLbl=1;rounded=0;labelBackgroundColor=none;fillColor=#23A2D9;fontSize=12;fontColor=#ffffff;align=center;strokeColor=#0E7DAD;metaEdit=1;points=[[0.5,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.5,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];resizable=0;" vertex="1" parent="1">
|
||||
<object placeholders="1" c4Name="Datenbank Analyse" c4Type="Container" c4Technology="DuckDB" c4Description="Datenbank, welcher für die Analysen<br> verwendet wurden." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%:&nbsp;%c4Technology%]</div><br><div><font style="font-size: 11px"><font color="#E6E6E6">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-2">
|
||||
<mxCell style="shape=cylinder3;size=15;whiteSpace=wrap;html=1;boundedLbl=1;rounded=0;labelBackgroundColor=none;fillColor=#23A2D9;fontSize=12;fontColor=#ffffff;align=center;strokeColor=#0E7DAD;metaEdit=1;points=[[0.5,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.5,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];resizable=0;" parent="1" vertex="1">
|
||||
<mxGeometry x="790" y="100" width="240" height="120" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-5" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0;exitY=0.5;exitDx=0;exitDy=0;exitPerimeter=0;dashed=1;dashPattern=8 8;" edge="1" parent="1" source="0Mexl9jQAquWokRCgHYt-3" target="0Mexl9jQAquWokRCgHYt-1">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-5" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0;exitY=0.5;exitDx=0;exitDy=0;exitPerimeter=0;dashed=1;dashPattern=8 8;" parent="1" source="0Mexl9jQAquWokRCgHYt-3" target="0Mexl9jQAquWokRCgHYt-1" edge="1">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-7" value="liest Datenbank" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" vertex="1" connectable="0" parent="0Mexl9jQAquWokRCgHYt-5">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-7" value="liest Datenbank" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" parent="0Mexl9jQAquWokRCgHYt-5" vertex="1" connectable="0">
|
||||
<mxGeometry x="-0.2497" y="-1" relative="1" as="geometry">
|
||||
<mxPoint x="-10" y="1" as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<object placeholders="1" c4Name="Sling" c4Type="sling-cli" c4Description="Kommandozeilenprogramm zur Migration von Datensätzen." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%]</div><br><div><font style="font-size: 11px"><font color="#cccccc">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-3">
|
||||
<mxCell style="rounded=1;whiteSpace=wrap;html=1;labelBackgroundColor=none;fillColor=#1061B0;fontColor=#ffffff;align=center;arcSize=10;strokeColor=#0D5091;metaEdit=1;resizable=0;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" vertex="1" parent="1">
|
||||
<mxCell style="rounded=1;whiteSpace=wrap;html=1;labelBackgroundColor=none;fillColor=#1061B0;fontColor=#ffffff;align=center;arcSize=10;strokeColor=#0D5091;metaEdit=1;resizable=0;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" parent="1" vertex="1">
|
||||
<mxGeometry x="400" y="100" width="240" height="120" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-6" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;exitPerimeter=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;dashPattern=8 8;" edge="1" parent="1" source="0Mexl9jQAquWokRCgHYt-3" target="0Mexl9jQAquWokRCgHYt-2">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-6" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;exitPerimeter=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;dashPattern=8 8;" parent="1" source="0Mexl9jQAquWokRCgHYt-3" target="0Mexl9jQAquWokRCgHYt-2" edge="1">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-8" value="schreibt in Datenbank" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" vertex="1" connectable="0" parent="0Mexl9jQAquWokRCgHYt-6">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-8" value="schreibt in Datenbank" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" parent="0Mexl9jQAquWokRCgHYt-6" vertex="1" connectable="0">
|
||||
<mxGeometry x="-0.1744" relative="1" as="geometry">
|
||||
<mxPoint x="16" y="-1" as="offset" />
|
||||
<mxPoint x="12" y="-1" as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<object placeholders="1" c4Name="Preprocessing" c4Type="ContainerScopeBoundary" c4Application="Component" label="<font style="font-size: 16px"><b><div style="text-align: left">%c4Name%</div></b></font><div style="text-align: left">[%c4Application%]</div>" id="0Mexl9jQAquWokRCgHYt-9">
|
||||
<mxCell style="rounded=1;fontSize=11;whiteSpace=wrap;html=1;dashed=1;arcSize=20;fillColor=none;strokeColor=#666666;fontColor=#333333;labelBackgroundColor=none;align=left;verticalAlign=bottom;labelBorderColor=none;spacingTop=0;spacing=10;dashPattern=8 4;metaEdit=1;rotatable=0;perimeter=rectanglePerimeter;noLabel=0;labelPadding=0;allowArrows=0;connectable=0;expand=0;recursiveResize=0;editable=1;pointerEvents=0;absoluteArcSize=1;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" vertex="1" parent="1">
|
||||
<mxCell style="rounded=1;fontSize=11;whiteSpace=wrap;html=1;dashed=1;arcSize=20;fillColor=none;strokeColor=#666666;fontColor=#333333;labelBackgroundColor=none;align=left;verticalAlign=bottom;labelBorderColor=none;spacingTop=0;spacing=10;dashPattern=8 4;metaEdit=1;rotatable=0;perimeter=rectanglePerimeter;noLabel=0;labelPadding=0;allowArrows=0;connectable=0;expand=0;recursiveResize=0;editable=1;pointerEvents=0;absoluteArcSize=1;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" parent="1" vertex="1">
|
||||
<mxGeometry x="20" y="40" width="1030" height="270" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<object placeholders="1" c4Name="Datenbank Analyse" c4Type="Container" c4Technology="DuckDB" c4Description="Datenbank, welcher für die Analysen verwendet wurden." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%:&nbsp;%c4Technology%]</div><br><div><font style="font-size: 11px"><font color="#E6E6E6">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-10">
|
||||
<mxCell style="shape=cylinder3;size=15;whiteSpace=wrap;html=1;boundedLbl=1;rounded=0;labelBackgroundColor=none;fillColor=#23A2D9;fontSize=12;fontColor=#ffffff;align=center;strokeColor=#0E7DAD;metaEdit=1;points=[[0.5,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.5,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];resizable=0;" vertex="1" parent="1">
|
||||
<object placeholders="1" c4Name="Datenbank" c4Type="Container" c4Technology="DuckDB" c4Description="Datenbank, welcher für die Analysen<br> verwendet wurden." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%:&nbsp;%c4Technology%]</div><br><div><font style="font-size: 11px"><font color="#E6E6E6">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-10">
|
||||
<mxCell style="shape=cylinder3;size=15;whiteSpace=wrap;html=1;boundedLbl=1;rounded=0;labelBackgroundColor=none;fillColor=#23A2D9;fontSize=12;fontColor=#ffffff;align=center;strokeColor=#0E7DAD;metaEdit=1;points=[[0.5,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.5,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];resizable=0;" parent="1" vertex="1">
|
||||
<mxGeometry x="80" y="480" width="240" height="120" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<object placeholders="1" c4Name="Datenaufbereitung" c4Type="ContainerScopeBoundary" c4Application="ETL" label="<font style="font-size: 16px"><b><div style="text-align: left">%c4Name%</div></b></font><div style="text-align: left">[%c4Application%]</div>" id="0Mexl9jQAquWokRCgHYt-11">
|
||||
<mxCell style="rounded=1;fontSize=11;whiteSpace=wrap;html=1;dashed=1;arcSize=20;fillColor=none;strokeColor=#666666;fontColor=#333333;labelBackgroundColor=none;align=left;verticalAlign=bottom;labelBorderColor=none;spacingTop=0;spacing=10;dashPattern=8 4;metaEdit=1;rotatable=0;perimeter=rectanglePerimeter;noLabel=0;labelPadding=0;allowArrows=0;connectable=0;expand=0;recursiveResize=0;editable=1;pointerEvents=0;absoluteArcSize=1;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" vertex="1" parent="1">
|
||||
<mxGeometry x="30" y="440" width="1030" height="490" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-23" style="rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;exitPerimeter=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;dashPattern=8 8;" edge="1" parent="1" source="0Mexl9jQAquWokRCgHYt-12" target="0Mexl9jQAquWokRCgHYt-14">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-23" style="rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;exitPerimeter=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;dashPattern=8 8;" parent="1" source="0Mexl9jQAquWokRCgHYt-12" target="0Mexl9jQAquWokRCgHYt-14" edge="1">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-24" value="verwendet" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" vertex="1" connectable="0" parent="0Mexl9jQAquWokRCgHYt-23">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-24" value="verwendet" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontSize=14;" parent="0Mexl9jQAquWokRCgHYt-23" vertex="1" connectable="0">
|
||||
<mxGeometry x="-0.0114" y="-2" relative="1" as="geometry">
|
||||
<mxPoint as="offset" />
|
||||
<mxPoint y="-2" as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<object placeholders="1" c4Name="etl_*.py" c4Type="Python (Polars)" c4Description="Diverse Python Skripts zur Aufbereitung / Zusammenstellung der Daten." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%]</div><br><div><font style="font-size: 11px"><font color="#cccccc">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-12">
|
||||
<mxCell style="rounded=1;whiteSpace=wrap;html=1;labelBackgroundColor=none;fillColor=#1061B0;fontColor=#ffffff;align=center;arcSize=10;strokeColor=#0D5091;metaEdit=1;resizable=0;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" vertex="1" parent="1">
|
||||
<mxCell style="rounded=1;whiteSpace=wrap;html=1;labelBackgroundColor=none;fillColor=#1061B0;fontColor=#ffffff;align=center;arcSize=10;strokeColor=#0D5091;metaEdit=1;resizable=0;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" parent="1" vertex="1">
|
||||
<mxGeometry x="430" y="710" width="240" height="120" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-16" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.5;exitY=0;exitDx=0;exitDy=0;exitPerimeter=0;dashed=1;dashPattern=8 8;" edge="1" parent="1" source="0Mexl9jQAquWokRCgHYt-13" target="0Mexl9jQAquWokRCgHYt-10">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-16" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.5;exitY=0;exitDx=0;exitDy=0;exitPerimeter=0;dashed=1;dashPattern=8 8;" parent="1" source="0Mexl9jQAquWokRCgHYt-13" target="0Mexl9jQAquWokRCgHYt-10" edge="1">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-17" value="Liest Datenbank" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" vertex="1" connectable="0" parent="0Mexl9jQAquWokRCgHYt-16">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-17" value="liest Datenbank" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontSize=14;" parent="0Mexl9jQAquWokRCgHYt-16" vertex="1" connectable="0">
|
||||
<mxGeometry x="-0.1633" relative="1" as="geometry">
|
||||
<mxPoint as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<object placeholders="1" c4Name="database.py" c4Type="Python (DuckDB Interface)" c4Description="Wrapper Skript zum Ausführen von SQL." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%]</div><br><div><font style="font-size: 11px"><font color="#cccccc">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-13">
|
||||
<mxCell style="rounded=1;whiteSpace=wrap;html=1;labelBackgroundColor=none;fillColor=#1061B0;fontColor=#ffffff;align=center;arcSize=10;strokeColor=#0D5091;metaEdit=1;resizable=0;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" vertex="1" parent="1">
|
||||
<mxCell style="rounded=1;whiteSpace=wrap;html=1;labelBackgroundColor=none;fillColor=#1061B0;fontColor=#ffffff;align=center;arcSize=10;strokeColor=#0D5091;metaEdit=1;resizable=0;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" parent="1" vertex="1">
|
||||
<mxGeometry x="80" y="710" width="240" height="120" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-18" style="rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.25;exitY=0;exitDx=0;exitDy=0;exitPerimeter=0;dashed=1;dashPattern=8 8;entryX=0.24;entryY=0.981;entryDx=0;entryDy=0;entryPerimeter=0;" edge="1" parent="1" source="0Mexl9jQAquWokRCgHYt-14" target="0Mexl9jQAquWokRCgHYt-15">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-18" style="rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.25;exitY=0;exitDx=0;exitDy=0;exitPerimeter=0;dashed=1;dashPattern=8 8;entryX=0.24;entryY=0.981;entryDx=0;entryDy=0;entryPerimeter=0;" parent="1" source="0Mexl9jQAquWokRCgHYt-14" target="0Mexl9jQAquWokRCgHYt-15" edge="1">
|
||||
<mxGeometry relative="1" as="geometry">
|
||||
<mxPoint x="900" y="600" as="targetPoint" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-19" value="schreibt pickle objekt" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" vertex="1" connectable="0" parent="0Mexl9jQAquWokRCgHYt-18">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-19" value="schreibt pickle objekt" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontSize=14;" parent="0Mexl9jQAquWokRCgHYt-18" vertex="1" connectable="0">
|
||||
<mxGeometry x="-0.1818" y="2" relative="1" as="geometry">
|
||||
<mxPoint as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<object placeholders="1" c4Name="etl_cache.py" c4Type="Python (Pickle)" c4Description="Diverse Python Skripts zur Aufbereitung / Zusammenstellung der Daten." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%]</div><br><div><font style="font-size: 11px"><font color="#cccccc">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-14">
|
||||
<mxCell style="rounded=1;whiteSpace=wrap;html=1;labelBackgroundColor=none;fillColor=#1061B0;fontColor=#ffffff;align=center;arcSize=10;strokeColor=#0D5091;metaEdit=1;resizable=0;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" vertex="1" parent="1">
|
||||
<mxCell style="rounded=1;whiteSpace=wrap;html=1;labelBackgroundColor=none;fillColor=#1061B0;fontColor=#ffffff;align=center;arcSize=10;strokeColor=#0D5091;metaEdit=1;resizable=0;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" parent="1" vertex="1">
|
||||
<mxGeometry x="780" y="710" width="240" height="120" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<object placeholders="1" c4Name="Cache" c4Type="Container" c4Technology="Filesystem" c4Description="Das Dateisystem wird als Pufferspeicher verwendet. Die Daten werden als Pickle Objekte gespeichert." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%:&nbsp;%c4Technology%]</div><br><div><font style="font-size: 11px"><font color="#E6E6E6">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-15">
|
||||
<mxCell style="shape=cylinder3;size=15;whiteSpace=wrap;html=1;boundedLbl=1;rounded=0;labelBackgroundColor=none;fillColor=#23A2D9;fontSize=12;fontColor=#ffffff;align=center;strokeColor=#0E7DAD;metaEdit=1;points=[[0.5,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.5,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];resizable=0;" vertex="1" parent="1">
|
||||
<object placeholders="1" c4Name="Cache" c4Type="Container" c4Technology="Filesystem" c4Description="Das Dateisystem wird als Pufferspeicher verwendet." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%:&nbsp;%c4Technology%]</div><br><div><font style="font-size: 11px"><font color="#E6E6E6">%c4Description%</font></div>" id="0Mexl9jQAquWokRCgHYt-15">
|
||||
<mxCell style="shape=cylinder3;size=15;whiteSpace=wrap;html=1;boundedLbl=1;rounded=0;labelBackgroundColor=none;fillColor=#23A2D9;fontSize=12;fontColor=#ffffff;align=center;strokeColor=#0E7DAD;metaEdit=1;points=[[0.5,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.5,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];resizable=0;" parent="1" vertex="1">
|
||||
<mxGeometry x="780" y="480" width="240" height="120" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-20" style="rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0.746;entryY=1.002;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;dashPattern=8 8;exitX=0.75;exitY=0;exitDx=0;exitDy=0;exitPerimeter=0;" edge="1" parent="1" source="0Mexl9jQAquWokRCgHYt-14" target="0Mexl9jQAquWokRCgHYt-15">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-20" style="rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0.746;entryY=1.002;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;dashPattern=8 8;exitX=0.75;exitY=0;exitDx=0;exitDy=0;exitPerimeter=0;" parent="1" source="0Mexl9jQAquWokRCgHYt-14" target="0Mexl9jQAquWokRCgHYt-15" edge="1">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-21" value="liest pickle objekt" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" vertex="1" connectable="0" parent="0Mexl9jQAquWokRCgHYt-20">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-21" value="liest pickle objekt" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontSize=14;" parent="0Mexl9jQAquWokRCgHYt-20" vertex="1" connectable="0">
|
||||
<mxGeometry x="-0.1076" y="1" relative="1" as="geometry">
|
||||
<mxPoint x="8" y="-11" as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-25" style="rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0;exitY=0.5;exitDx=0;exitDy=0;exitPerimeter=0;entryX=1;entryY=0.5;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;dashPattern=8 8;" edge="1" parent="1" source="0Mexl9jQAquWokRCgHYt-12" target="0Mexl9jQAquWokRCgHYt-13">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-25" style="rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0;exitY=0.5;exitDx=0;exitDy=0;exitPerimeter=0;entryX=1;entryY=0.5;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;dashPattern=8 8;" parent="1" source="0Mexl9jQAquWokRCgHYt-12" target="0Mexl9jQAquWokRCgHYt-13" edge="1">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-26" value="Verwendet" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" vertex="1" connectable="0" parent="0Mexl9jQAquWokRCgHYt-25">
|
||||
<mxCell id="0Mexl9jQAquWokRCgHYt-26" value="verwendet" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontSize=14;" parent="0Mexl9jQAquWokRCgHYt-25" vertex="1" connectable="0">
|
||||
<mxGeometry x="0.0473" relative="1" as="geometry">
|
||||
<mxPoint as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="e6qn9whkbaCBCFCjUvdY-3" style="rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.5;exitY=0;exitDx=0;exitDy=0;exitPerimeter=0;entryX=0.5;entryY=1;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;dashPattern=8 8;" edge="1" parent="1" source="e6qn9whkbaCBCFCjUvdY-1" target="0Mexl9jQAquWokRCgHYt-13">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="e6qn9whkbaCBCFCjUvdY-6" value="führt Funktionen aus" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontSize=14;" vertex="1" connectable="0" parent="e6qn9whkbaCBCFCjUvdY-3">
|
||||
<mxGeometry x="0.0906" relative="1" as="geometry">
|
||||
<mxPoint y="1" as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<object placeholders="1" c4Name="FastAPI" c4Type="Python (FastAPI)" c4Description="Stellt die aufbereiteten Daten über eine JSON-Schnittstelle zur Verfügung." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%]</div><br><div><font style="font-size: 11px"><font color="#cccccc">%c4Description%</font></div>" id="e6qn9whkbaCBCFCjUvdY-1">
|
||||
<mxCell style="rounded=1;whiteSpace=wrap;html=1;labelBackgroundColor=none;fillColor=#1061B0;fontColor=#ffffff;align=center;arcSize=10;strokeColor=#0D5091;metaEdit=1;resizable=0;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" vertex="1" parent="1">
|
||||
<mxGeometry x="430" y="970" width="240" height="120" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<mxCell id="e6qn9whkbaCBCFCjUvdY-2" style="rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.5;exitY=0;exitDx=0;exitDy=0;exitPerimeter=0;entryX=0.5;entryY=1;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;dashPattern=8 8;" edge="1" parent="1" source="e6qn9whkbaCBCFCjUvdY-1" target="0Mexl9jQAquWokRCgHYt-12">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="e6qn9whkbaCBCFCjUvdY-5" value="führt Funktionen aus" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontSize=14;" vertex="1" connectable="0" parent="e6qn9whkbaCBCFCjUvdY-2">
|
||||
<mxGeometry x="0.0286" y="-1" relative="1" as="geometry">
|
||||
<mxPoint as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
</root>
|
||||
</mxGraphModel>
|
||||
</diagram>
|
||||
|
|
|
@ -1,10 +1,18 @@
|
|||
<mxfile host="app.diagrams.net" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36" version="26.0.5" pages="2">
|
||||
<mxfile host="app.diagrams.net" agent="Mozilla/5.0 (X11; Linux x86_64; rv:134.0) Gecko/20100101 Firefox/134.0" version="26.0.6" pages="2">
|
||||
<diagram name="Seite-1" id="chpUGVRRn7alPJZ1I-il">
|
||||
<mxGraphModel dx="2761" dy="1531" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
|
||||
<mxGraphModel dx="1291" dy="790" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
|
||||
<root>
|
||||
<mxCell id="0" />
|
||||
<mxCell id="1" parent="0" />
|
||||
<object placeholders="1" c4Name="RDBMS" c4Type="Container" c4Technology="DuckDB" c4Description="Aggregierte Daten." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%:&nbsp;%c4Technology%]</div><br><div><font style="font-size: 11px"><font color="#E6E6E6">%c4Description%</font></div>" id="_wAeSdXpbb6KPP4DEc36-2">
|
||||
<mxCell id="tzVNFCieMdwak3VSEkXc-1" value="" style="rounded=0;whiteSpace=wrap;html=1;strokeColor=none;fillColor=#F5F5F5;" vertex="1" parent="1">
|
||||
<mxGeometry x="10" y="20" width="750" height="780" as="geometry" />
|
||||
</mxCell>
|
||||
<object placeholders="1" c4Name="Visual Analytics Tool" c4Type="SystemScopeBoundary" c4Application="Software System" label="<font style="font-size: 16px"><b><div style="text-align: left">%c4Name%</div></b></font><div style="text-align: left">[%c4Application%]</div>" id="_wAeSdXpbb6KPP4DEc36-23">
|
||||
<mxCell style="rounded=1;fontSize=11;whiteSpace=wrap;html=1;dashed=1;arcSize=20;fillColor=default;strokeColor=#666666;fontColor=#333333;labelBackgroundColor=none;align=left;verticalAlign=bottom;labelBorderColor=none;spacingTop=0;spacing=10;dashPattern=8 4;metaEdit=1;rotatable=0;perimeter=rectanglePerimeter;noLabel=0;labelPadding=0;allowArrows=0;connectable=0;expand=0;recursiveResize=0;editable=1;pointerEvents=0;absoluteArcSize=1;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" parent="1" vertex="1">
|
||||
<mxGeometry x="30" y="40" width="710" height="540" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
<object placeholders="1" c4Name="Datenbank" c4Type="Container" c4Technology="DuckDB" c4Description="Aggregierte Daten." label="<font style="font-size: 16px"><b>%c4Name%</b></font><div>[%c4Type%:&nbsp;%c4Technology%]</div><br><div><font style="font-size: 11px"><font color="#E6E6E6">%c4Description%</font></div>" id="_wAeSdXpbb6KPP4DEc36-2">
|
||||
<mxCell style="shape=cylinder3;size=15;whiteSpace=wrap;html=1;boundedLbl=1;rounded=0;labelBackgroundColor=none;fillColor=#23A2D9;fontSize=12;fontColor=#ffffff;align=center;strokeColor=#0E7DAD;metaEdit=1;points=[[0.5,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.5,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];resizable=0;" parent="1" vertex="1">
|
||||
<mxGeometry x="50" y="60" width="240" height="120" as="geometry" />
|
||||
</mxCell>
|
||||
|
@ -82,11 +90,6 @@
|
|||
<mxPoint x="5" y="7" as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<object placeholders="1" c4Name="Visual Analytics Tool" c4Type="SystemScopeBoundary" c4Application="Software System" label="<font style="font-size: 16px"><b><div style="text-align: left">%c4Name%</div></b></font><div style="text-align: left">[%c4Application%]</div>" id="_wAeSdXpbb6KPP4DEc36-23">
|
||||
<mxCell style="rounded=1;fontSize=11;whiteSpace=wrap;html=1;dashed=1;arcSize=20;fillColor=none;strokeColor=#666666;fontColor=#333333;labelBackgroundColor=none;align=left;verticalAlign=bottom;labelBorderColor=none;spacingTop=0;spacing=10;dashPattern=8 4;metaEdit=1;rotatable=0;perimeter=rectanglePerimeter;noLabel=0;labelPadding=0;allowArrows=0;connectable=0;expand=0;recursiveResize=0;editable=1;pointerEvents=0;absoluteArcSize=1;points=[[0.25,0,0],[0.5,0,0],[0.75,0,0],[1,0.25,0],[1,0.5,0],[1,0.75,0],[0.75,1,0],[0.5,1,0],[0.25,1,0],[0,0.75,0],[0,0.5,0],[0,0.25,0]];" parent="1" vertex="1">
|
||||
<mxGeometry x="30" y="40" width="710" height="540" as="geometry" />
|
||||
</mxCell>
|
||||
</object>
|
||||
</root>
|
||||
</mxGraphModel>
|
||||
</diagram>
|
||||
|
|
|
@ -1,4 +1,25 @@
|
|||
# How to run
|
||||
## Installation
|
||||
Folgende Schritte zur Installation vornehmen
|
||||
|
||||
### Abhängigkeiten installieren
|
||||
Zur Verwaltung der Abhängigkeiten wird [pixi](https://pixi.sh/) verwendet.
|
||||
```bash
|
||||
pixi install
|
||||
```
|
||||
|
||||
### Datenbankverbindung konfigurieren
|
||||
Enviroment File erstellen:
|
||||
```bash
|
||||
cp src/.env.example .env
|
||||
```
|
||||
|
||||
Im erstellten .env File die Datei anpassen:
|
||||
```
|
||||
DATABASE="/path/to/db.duckdb"
|
||||
```
|
||||
|
||||
# FastAPI starten
|
||||
FastAPI auf einem anderen Port ausführen als das Dashboard.
|
||||
```bash
|
||||
fastapi dev api/main.py --port 8080
|
||||
```
|
|
@ -2196,13 +2196,6 @@ packages:
|
|||
- pkg:pypi/colorama?source=hash-mapping
|
||||
size: 25170
|
||||
timestamp: 1666700778190
|
||||
- kind: pypi
|
||||
name: consultancy-2
|
||||
version: 0.1.0
|
||||
path: .
|
||||
sha256: c09f63486f0dd4151008de68ef73d00f72663dc3cc47894ff750d517f898a23b
|
||||
requires_python: '>=3.11'
|
||||
editable: true
|
||||
- kind: conda
|
||||
name: dnspython
|
||||
version: 2.7.0
|
||||
|
@ -2280,6 +2273,13 @@ packages:
|
|||
purls: []
|
||||
size: 6690
|
||||
timestamp: 1718984720419
|
||||
- kind: pypi
|
||||
name: etl
|
||||
version: 0.1.0
|
||||
path: .
|
||||
sha256: d682071d587e9be1fcf91237a1add69a92c34715bc491a4067b07d63ce79616d
|
||||
requires_python: '>=3.11'
|
||||
editable: true
|
||||
- kind: conda
|
||||
name: exceptiongroup
|
||||
version: 1.2.2
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
[project]
|
||||
authors = [{name = "Giò Diani", email = "mail@gionathandiani.name"}, {name = "Mauro Stoffel", email = "mauro.stoffel@stud.fhgr.ch"}, {name = "Colin Bolli", email = "colin.bolli@stud.fhgr.ch"}, {name = "Charles Winkler", email = "charles.winkler@stud.fhgr.ch"}]
|
||||
description = "Datenauferbeitung"
|
||||
name = "consultancy_2"
|
||||
name = "ETL"
|
||||
requires-python = ">= 3.11"
|
||||
version = "0.1.0"
|
||||
|
||||
|
@ -14,7 +14,7 @@ channels = ["conda-forge"]
|
|||
platforms = ["win-64", "linux-64", "osx-64", "osx-arm64"]
|
||||
|
||||
[tool.pixi.pypi-dependencies]
|
||||
consultancy_2 = { path = ".", editable = true }
|
||||
etl = { path = ".", editable = true }
|
||||
|
||||
[tool.pixi.tasks]
|
||||
|
||||
|
|
|
@ -1,104 +1,268 @@
|
|||
import datetime
|
||||
from typing import List, Union
|
||||
|
||||
import data
|
||||
import polars as pl
|
||||
from data import etl_property_capacities as etl_pc
|
||||
from data import etl_property_capacities_daily as etl_pcd
|
||||
from data import etl_property_capacities_monthly as etl_pcm
|
||||
from data import etl_property_capacities_weekdays as etl_pcw
|
||||
from data import etl_property_neighbours as etl_pn
|
||||
from data import etl_region_capacities as etl_rc
|
||||
from data import etl_region_capacities_comparison as etl_rcc
|
||||
from data import etl_region_capacities_daily as etl_rcd
|
||||
from data import etl_region_capacities_monthly as etl_rcm
|
||||
from data import etl_region_capacities_weekdays as etl_rcw
|
||||
from data import etl_region_movAverage as etl_rmA
|
||||
from data import etl_region_properties_capacities as etl_rpc
|
||||
from fastapi import FastAPI, Response
|
||||
from fastapi import FastAPI
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class RegionsItems(BaseModel):
|
||||
name: str
|
||||
id: str
|
||||
count_properties: int
|
||||
|
||||
class Regions(BaseModel):
|
||||
regions: List[RegionsItems]
|
||||
|
||||
class RegionBase(BaseModel):
|
||||
name: str
|
||||
id: str
|
||||
|
||||
class RegionPropertiesCapacitiesValues(BaseModel):
|
||||
date: str
|
||||
property_id: str
|
||||
capacity: float
|
||||
|
||||
class RegionCapacities(BaseModel):
|
||||
capacities: List[float]
|
||||
dates: List
|
||||
|
||||
class RegionCapacitiesMonthly(BaseModel):
|
||||
months: List[str]
|
||||
capacities: List[float]
|
||||
|
||||
class RegionCapacitiesDaily(BaseModel):
|
||||
weekdays: List[str]
|
||||
capacities: List[float]
|
||||
|
||||
class RegionPropertiesCapacities(BaseModel):
|
||||
dates: List
|
||||
property_ids: List
|
||||
values: List[RegionPropertiesCapacitiesValues]
|
||||
|
||||
class RegionMovingAverage(BaseModel):
|
||||
dates: List
|
||||
capacities_timeframe_before: List[Union[float, None]]
|
||||
capacities_timeframe_after: List[Union[float, None]]
|
||||
capacities_moving_average: List[Union[float, None]]
|
||||
|
||||
class PropertiesGrowth(BaseModel):
|
||||
dates: List
|
||||
total_all: List[Union[int, None]]
|
||||
total_heidiland: List[Union[int, None]]
|
||||
total_engadin: List[Union[int, None]]
|
||||
total_stmoritz: List[Union[int, None]]
|
||||
total_davos: List[Union[int, None]]
|
||||
|
||||
class PropertiesGeoList(BaseModel):
|
||||
property_id: str
|
||||
latlng: str
|
||||
region_id: str
|
||||
|
||||
class PropertiesGeo(BaseModel):
|
||||
properties: List[PropertiesGeoList]
|
||||
|
||||
class PropertyNeighboursList(BaseModel):
|
||||
id: str
|
||||
lat: float
|
||||
lon: float
|
||||
|
||||
class PropertyNeighbours(BaseModel):
|
||||
neighbours: List[PropertyNeighboursList]
|
||||
|
||||
class PropertyNeighboursList(BaseModel):
|
||||
id: str
|
||||
lat: float
|
||||
lon: float
|
||||
|
||||
class PropertyExtractionsList(BaseModel):
|
||||
calendar: str
|
||||
date: str
|
||||
|
||||
class PropertyExtractions(BaseModel):
|
||||
extractions: List[PropertyExtractionsList]
|
||||
|
||||
class PropertyCapacities(BaseModel):
|
||||
capacities: List[float]
|
||||
dates: List[str]
|
||||
|
||||
class PropertyCapacitiesMonthly(BaseModel):
|
||||
months: List[str]
|
||||
capacities: List[float]
|
||||
|
||||
class PropertyCapacitiesDaily(BaseModel):
|
||||
weekdays: List[str]
|
||||
capacities: List[float]
|
||||
|
||||
class PropertyBaseDetail(BaseModel):
|
||||
property_platform_id: str
|
||||
first_found: str
|
||||
last_found: str
|
||||
latlng: str
|
||||
region_id: str
|
||||
region_name: str
|
||||
|
||||
class PropertyBase(BaseModel):
|
||||
property_platform_id: str
|
||||
first_found: str
|
||||
last_found: str
|
||||
latlng: str
|
||||
region_id: str
|
||||
region_name: str
|
||||
|
||||
|
||||
d = data.load()
|
||||
|
||||
app = FastAPI()
|
||||
tags_metadata = [
|
||||
{
|
||||
"name": "regions",
|
||||
"description": "Get data for regions.",
|
||||
},
|
||||
{
|
||||
"name": "properties",
|
||||
"description": "Get data for properties",
|
||||
},
|
||||
]
|
||||
|
||||
app = FastAPI(openapi_tags=tags_metadata)
|
||||
|
||||
@app.get("/")
|
||||
def read_root():
|
||||
return {"Hi there!"}
|
||||
|
||||
@app.get("/items/{item_id}")
|
||||
def read_item(item_id: int):
|
||||
ext = d.extractions_for(item_id).pl()
|
||||
out = ext.with_columns(pl.col("calendar").str.extract_all(r"([0-9]{4}-[0-9]{2}-[0-9]{2})|[0-2]").alias("calendar_data"))
|
||||
out = out.drop(['calendar', 'property_id'])
|
||||
return Response(content=out.write_json(), media_type="application/json")
|
||||
@app.get("/regions", response_model=Regions, tags=['region'])
|
||||
def regions():
|
||||
"""
|
||||
Returns a list of all available regions.
|
||||
"""
|
||||
return {"regions" : d.properties_per_region().pl().to_dicts()}
|
||||
|
||||
@app.get("/region/properties")
|
||||
def properties_region():
|
||||
return d.properties_per_region().pl().to_dicts()
|
||||
@app.get("/regions/{id}/base", response_model=RegionBase, tags=['region'])
|
||||
def region_base(id: int):
|
||||
"""
|
||||
Returns basic information about a region.
|
||||
"""
|
||||
base = d.region_base_data(id).pl().to_dicts()
|
||||
return {"id": base[0]["id"], "name": base[0]["name"]}
|
||||
|
||||
@app.get("/properties/growth")
|
||||
def properties_growth():
|
||||
options = {"dates" : d.properties_growth().pl()['date'].to_list(), "total_all" : d.properties_growth().pl()['total_all'].to_list(), "total_heidiland" : d.properties_growth().pl()['total_heidiland'].to_list(), "total_engadin" : d.properties_growth().pl()['total_engadin'].to_list(), "total_davos" : d.properties_growth().pl()['total_davos'].to_list(), "total_stmoritz" : d.properties_growth().pl()['total_stmoritz'].to_list()}
|
||||
return options
|
||||
|
||||
@app.get("/properties/geo")
|
||||
def properties_geo():
|
||||
return d.properties_geo().pl().to_dicts()
|
||||
|
||||
@app.get("/property/{id}/neighbours")
|
||||
def property_neighbours(id: int):
|
||||
capacities = etl_pn.property_neighbours(id)
|
||||
return capacities
|
||||
|
||||
@app.get("/property/{id}/extractions")
|
||||
def property_extractions(id: int):
|
||||
return d.extractions_for(property_id = id).pl().to_dicts()
|
||||
|
||||
@app.get("/property/{id}/capacities")
|
||||
def property_capacities_data(id: int):
|
||||
capacities = etl_pc.property_capacities(id)
|
||||
return capacities
|
||||
|
||||
@app.get("/property/{id}/capacities/monthly/{scrapeDate}")
|
||||
def property_capacities_data(id: int, scrapeDate: str):
|
||||
capacities = etl_pcm.property_capacities_monthly(id, scrapeDate)
|
||||
return capacities
|
||||
|
||||
@app.get("/property/{id}/capacities/weekdays/{scrapeDate}")
|
||||
def property_capacities_data(id: int, scrapeDate: str):
|
||||
capacities = etl_pcw.property_capacities_weekdays(id, scrapeDate)
|
||||
return capacities
|
||||
|
||||
@app.get("/property/{id}/base")
|
||||
def property_base_data(id: int):
|
||||
return d.property_base_data(id).pl().to_dicts()
|
||||
|
||||
@app.get("/region/{id}/properties/capacities")
|
||||
def region_property_capacities_data(id: int):
|
||||
capacities = etl_rpc.region_properties_capacities(id)
|
||||
return capacities
|
||||
|
||||
@app.get("/region/{id}/capacities")
|
||||
def region_capacities_data(id: int):
|
||||
@app.get("/regions/{id}/capacities", response_model=RegionCapacities, tags=['region'])
|
||||
def region_capacities(id: int):
|
||||
"""
|
||||
Returs the capacities of a region, for every scraping. Set id to -1 to obtain data for all regions.
|
||||
"""
|
||||
capacities = etl_rc.region_capacities(id)
|
||||
return capacities
|
||||
|
||||
@app.get("/region/{id}/capacities/monthly/{scrapeDate}")
|
||||
def region_capacities_data(id: int, scrapeDate: str):
|
||||
capacities = etl_rcm.region_capacities_monthly(id, scrapeDate)
|
||||
@app.get("/regions/{id}/capacities/monthly/{date}", response_model=RegionCapacitiesMonthly, tags=['region'])
|
||||
def region_capacities_monthly(id: int, date: datetime.date):
|
||||
"""
|
||||
Returns the capacities of a region for specified date by months. set id to -1 to obtain data for all regions.
|
||||
"""
|
||||
capacities = etl_rcm.region_capacities_monthly(id, date)
|
||||
return capacities
|
||||
|
||||
@app.get("/region/{id}/capacities/weekdays/{scrapeDate}")
|
||||
def region_capacities_data(id: int, scrapeDate: str):
|
||||
capacities = etl_rcw.region_capacities_weekdays(id, scrapeDate)
|
||||
@app.get("/regions/{id}/capacities/daily/{date}", response_model=RegionCapacitiesDaily, tags=['region'])
|
||||
def region_capacities_daily(id: int, date: datetime.date):
|
||||
"""
|
||||
Returns the capacities of a region for specified date by days. set id to -1 to obtain data for all regions.
|
||||
"""
|
||||
capacities = etl_rcd.region_capacities_daily(id, date)
|
||||
return capacities
|
||||
|
||||
@app.get("/region/capacities/comparison/{id_1}/{id_2}")
|
||||
def region_capacities_data(id_1: int, id_2: int):
|
||||
capacities = etl_rcc.region_capacities_comparison(id_1, id_2)
|
||||
return capacities
|
||||
|
||||
@app.get("/region/{id}/movingAverage/{startDate}")
|
||||
def region_capacities_data(id: int, startDate: str):
|
||||
result = etl_rmA.region_movingAverage(id, startDate)
|
||||
@app.get("/regions/{id}/moving-average/{date}", response_model=RegionMovingAverage, tags=['region'])
|
||||
def region_capacities_data(id: int, date: datetime.date):
|
||||
"""
|
||||
Returns the moving average of a region for specified date. set id to -1 to obtain data for all regions.
|
||||
"""
|
||||
result = etl_rmA.region_movingAverage(id, date)
|
||||
return result
|
||||
|
||||
@app.get("/region/{id}/base")
|
||||
def region_base_data(id: int):
|
||||
return d.region_base_data(id).pl().to_dicts()
|
||||
@app.get("/regions/{id}/properties/capacities", response_model=RegionPropertiesCapacities, tags=['region'])
|
||||
def region_property_capacities(id: int):
|
||||
"""
|
||||
Returns the capacities of properties in region, for every scraping. set id to -1 to obtain data for all regions.
|
||||
"""
|
||||
capacities = etl_rpc.region_properties_capacities(id)
|
||||
return capacities
|
||||
|
||||
@app.get("/properties/growth", response_model=PropertiesGrowth, tags=['property'])
|
||||
def properties_growth():
|
||||
"""
|
||||
Returns the growth rate of found properties
|
||||
"""
|
||||
options = {"dates" : d.properties_growth().pl()['date'].to_list(), "total_all" : d.properties_growth().pl()['total_all'].to_list(), "total_heidiland" : d.properties_growth().pl()['total_heidiland'].to_list(), "total_engadin" : d.properties_growth().pl()['total_engadin'].to_list(), "total_davos" : d.properties_growth().pl()['total_davos'].to_list(), "total_stmoritz" : d.properties_growth().pl()['total_stmoritz'].to_list()}
|
||||
return options
|
||||
|
||||
@app.get("/properties/geo", response_model=PropertiesGeo, tags=['property'])
|
||||
def properties_geo():
|
||||
"""
|
||||
Returns the geocoordinates of properties
|
||||
"""
|
||||
return {"properties": d.properties_geo().pl().to_dicts()}
|
||||
|
||||
@app.get("/properties/{id}/base", response_model=PropertyBase, tags=['property'])
|
||||
def property_base_data(id: int):
|
||||
"""
|
||||
Returns basic information about a property.
|
||||
"""
|
||||
base = d.property_base_data(id).pl().to_dicts()
|
||||
return {
|
||||
"property_platform_id": base[0]['property_platform_id'],
|
||||
"first_found": str(base[0]['first_found']),
|
||||
"last_found": str(base[0]['last_found']),
|
||||
"latlng": base[0]['latlng'],
|
||||
"region_id": base[0]['region_id'],
|
||||
"region_name": base[0]['region_name']}
|
||||
|
||||
@app.get("/properties/{id}/neighbours", response_model=PropertyNeighbours, tags=['property'])
|
||||
def property_neighbours(id: int):
|
||||
"""
|
||||
Returns the 10 nearest properties from given property.
|
||||
"""
|
||||
return {"neighbours" : etl_pn.property_neighbours(id)}
|
||||
|
||||
@app.get("/properties/{id}/extractions", response_model=PropertyExtractions, tags=['property'])
|
||||
def property_extractions(id: int):
|
||||
"""
|
||||
Returns extracted data from given property.
|
||||
"""
|
||||
return {"extractions" : d.extractions_for(property_id = id).pl().cast({"date": pl.String}).to_dicts()}
|
||||
|
||||
@app.get("/properties/{id}/capacities", response_model=PropertyCapacities, tags=['property'])
|
||||
def property_capacities_data(id: int):
|
||||
"""
|
||||
Returns capacities for given property.
|
||||
"""
|
||||
capacities = etl_pc.property_capacities(id)
|
||||
return capacities
|
||||
|
||||
@app.get("/properties/{id}/capacities/monthly/{date}", response_model=PropertyCapacitiesMonthly, tags=['property'])
|
||||
def property_capacities_data_monthly(id: int, date: datetime.date):
|
||||
"""
|
||||
Returns capacities for given property and date by month.
|
||||
"""
|
||||
capacities = etl_pcm.property_capacities_monthly(id, date)
|
||||
return capacities
|
||||
|
||||
@app.get("/properties/{id}/capacities/daily/{date}", response_model=PropertyCapacitiesDaily, tags=['property'])
|
||||
def property_capacities_data_daily(id: int, date: datetime.date):
|
||||
"""
|
||||
Returns capacities for given property and date by day.
|
||||
"""
|
||||
capacities = etl_pcd.property_capacities_daily(id, date)
|
||||
return capacities
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -298,7 +298,8 @@ class Database:
|
|||
FROM
|
||||
consultancy_d.extractions
|
||||
WHERE
|
||||
type == 'calendar'
|
||||
type == 'calendar' AND
|
||||
calendar NOT NULL
|
||||
ORDER BY
|
||||
property_id
|
||||
""")
|
||||
|
@ -319,13 +320,15 @@ class Database:
|
|||
consultancy_d.seeds ON seeds.id = properties.seed_id
|
||||
LEFT JOIN
|
||||
consultancy_d.regions ON regions.id = seeds.region_id
|
||||
WHERE
|
||||
calendar NOT NULL
|
||||
""")
|
||||
|
||||
def extractions_for(self, property_id):
|
||||
return self.connection.sql(f"""
|
||||
SELECT
|
||||
JSON_EXTRACT(body, '$.content.days') as calendar,
|
||||
created_at
|
||||
created_at as date
|
||||
FROM
|
||||
consultancy_d.extractions
|
||||
WHERE
|
||||
|
@ -402,7 +405,7 @@ class Database:
|
|||
p.property_platform_id,
|
||||
p.created_at as first_found,
|
||||
p.last_found,
|
||||
p.check_data,
|
||||
p.check_data as latlng,
|
||||
r.id as region_id,
|
||||
r.name as region_name
|
||||
FROM
|
||||
|
@ -420,8 +423,8 @@ class Database:
|
|||
where = f"WHERE r.id = {id}"
|
||||
return self.connection.sql(f"""
|
||||
SELECT
|
||||
r.id as region_id,
|
||||
r.name as region_name
|
||||
r.id as id,
|
||||
r.name as name
|
||||
FROM
|
||||
consultancy_d.regions r
|
||||
{where}
|
||||
|
@ -463,7 +466,8 @@ class Database:
|
|||
consultancy_d.properties ON properties.id = extractions.property_id
|
||||
WHERE
|
||||
type == 'calendar' AND
|
||||
properties.seed_id = {region_id}
|
||||
properties.seed_id = {region_id} AND
|
||||
calendarBody NOT NULL
|
||||
""")
|
||||
|
||||
def singleScrape_of_region(self, region_id: int, scrape_date_min: str, scrape_date_max: str):
|
||||
|
@ -478,7 +482,8 @@ class Database:
|
|||
type == 'calendar' AND
|
||||
properties.seed_id = {region_id} AND
|
||||
extractions.created_at >= '{scrape_date_min}' AND
|
||||
extractions.created_at < '{scrape_date_max}'
|
||||
extractions.created_at < '{scrape_date_max}' AND
|
||||
calendarBody NOT NULL
|
||||
""")
|
||||
|
||||
def singleScrape_of_global(self, scrape_date_min: str, scrape_date_max: str):
|
||||
|
@ -492,7 +497,8 @@ class Database:
|
|||
WHERE
|
||||
type == 'calendar' AND
|
||||
extractions.created_at >= '{scrape_date_min}' AND
|
||||
extractions.created_at < '{scrape_date_max}'
|
||||
extractions.created_at < '{scrape_date_max}' AND
|
||||
calendarBody NOT NULL
|
||||
""")
|
||||
|
||||
def singleScrape_of_region_scrapDate(self, region_id: int, scrape_date_min: str, scrape_date_max: str):
|
||||
|
@ -508,7 +514,8 @@ class Database:
|
|||
type == 'calendar' AND
|
||||
properties.seed_id = {region_id} AND
|
||||
extractions.created_at >= '{scrape_date_min}' AND
|
||||
extractions.created_at < '{scrape_date_max}'
|
||||
extractions.created_at < '{scrape_date_max}' AND
|
||||
calendarBody NOT NULL
|
||||
""")
|
||||
|
||||
def singleScrape_of_global_scrapDate(self, scrape_date_min: str, scrape_date_max: str):
|
||||
|
@ -523,7 +530,8 @@ class Database:
|
|||
WHERE
|
||||
type == 'calendar' AND
|
||||
extractions.created_at >= '{scrape_date_min}' AND
|
||||
extractions.created_at < '{scrape_date_max}'
|
||||
extractions.created_at < '{scrape_date_max}' AND
|
||||
calendarBody NOT NULL
|
||||
""")
|
||||
|
||||
def capacity_global(self):
|
||||
|
@ -538,6 +546,8 @@ class Database:
|
|||
consultancy_d.properties ON properties.id = extractions.property_id
|
||||
WHERE
|
||||
type == 'calendar'
|
||||
AND
|
||||
calendarBody NOT NULL
|
||||
""")
|
||||
|
||||
def capacity_comparison_of_region(self, region_id_1, region_id_2):
|
||||
|
@ -554,7 +564,8 @@ class Database:
|
|||
WHERE
|
||||
type == 'calendar' AND
|
||||
(properties.seed_id = {region_id_1} OR
|
||||
properties.seed_id = {region_id_2})
|
||||
properties.seed_id = {region_id_2}) AND
|
||||
calendarBody NOT NULL
|
||||
""")
|
||||
|
||||
def unique_scrapeDates(self):
|
||||
|
|
|
@ -1,46 +0,0 @@
|
|||
import polars as pl
|
||||
import json
|
||||
from datetime import datetime, timedelta
|
||||
def expansion_Pipeline(df):
|
||||
'''
|
||||
Rearranges a given extractions Dataframe into an expanded Dataframe.
|
||||
New Columns :propId, created_at calendar_date, calendar_value
|
||||
:param df: Inputs from database.py/extractions or database.py/extractions_for functions
|
||||
:return: expanded dataframe
|
||||
'''
|
||||
data = []
|
||||
|
||||
for row in df.iter_rows():
|
||||
propId = row[1]
|
||||
createdAt = row[2]
|
||||
if row[0]:
|
||||
temp = json.loads(row[0])
|
||||
keys = temp.keys()
|
||||
for key in keys:
|
||||
out = [propId, createdAt.date(), datetime.strptime(key, '%Y-%m-%d').date(), temp[key]]
|
||||
data.append(out)
|
||||
|
||||
df = pl.DataFrame(data, schema=["property_id", "created_at", "calendar_date", "calendar_value"])
|
||||
return df
|
||||
|
||||
def liveDates_Pipeline(df):
|
||||
'''
|
||||
Returns the expanded Dataframe with only the live data and no future data
|
||||
:param df: Inputs from database.py/extractions or database.py/extractions_for functions
|
||||
:return: expanded and filtered dataframe
|
||||
'''
|
||||
df = expansion_Pipeline(df)
|
||||
print(df)
|
||||
df = df.filter(pl.col("calendar_date") == pl.col("created_at")+timedelta(days=2))
|
||||
return df
|
||||
|
||||
def liveDates_PipelineFromExpanded(df):
|
||||
'''
|
||||
Filters an already expanded df and returns only the live data and no future data
|
||||
NOTE: The actual live date and the next is always 0. The reason is most likely that it is forbidden to
|
||||
book on the current or next day. Workaround: Compare with the day after tomorrow
|
||||
:param df: Inputs from expansion_Pipeline
|
||||
:return: expanded and filtered dataframe
|
||||
'''
|
||||
df = df.filter(pl.col("calendar_date") == pl.col("created_at")+timedelta(days=2))
|
||||
return df
|
|
@ -34,7 +34,7 @@ def property_capacities(id: int):
|
|||
count_days.append(len(liste))
|
||||
|
||||
counts = pl.DataFrame({"count_days" : count_days, "sum" : sum_hor})
|
||||
result = {"capacities": [], "dates": extractions['created_at'].cast(pl.Date).to_list() }
|
||||
result = {"capacities": [], "dates": extractions['date'].cast(pl.Date).cast(pl.String).to_list() }
|
||||
|
||||
for row in counts.rows(named=True):
|
||||
max_capacity = row['count_days'] * 2
|
||||
|
|
|
@ -7,7 +7,7 @@ from data import etl_cache
|
|||
|
||||
d = data.load()
|
||||
|
||||
def property_capacities_weekdays(id: int, scrapeDate: str):
|
||||
def property_capacities_daily(id: int, scrapeDate: str):
|
||||
|
||||
file = f"etl_property_capacities_weekdays_{id}_{scrapeDate}.obj"
|
||||
obj = etl_cache.openObj(file)
|
||||
|
@ -36,6 +36,6 @@ def property_capacities_weekdays(id: int, scrapeDate: str):
|
|||
df_calendar = df_calendar.sort('weekday_num')
|
||||
df_calendar = df_calendar.drop('weekday_num')
|
||||
|
||||
result = {"scraping-date": scrapeDate, "weekdays": df_calendar['weekday'].to_list(), 'capacities': df_calendar['column_0'].to_list()}
|
||||
result = {"date": scrapeDate, "weekdays": df_calendar['weekday'].to_list(), 'capacities': df_calendar['column_0'].to_list()}
|
||||
etl_cache.saveObj(file, result)
|
||||
return result
|
|
@ -24,12 +24,15 @@ def property_capacities_monthly(id: int, scrapeDate: str):
|
|||
df_calendar = df_calendar.transpose()
|
||||
df_calendar = df_calendar.with_columns(pl.Series(name="dates", values=columnTitles))
|
||||
df_calendar = df_calendar.with_columns((pl.col("dates").str.to_date()))
|
||||
df_calendar = df_calendar.with_columns((pl.col("dates").dt.month_end().dt.day().alias('numDays')))
|
||||
df_calendar = df_calendar.with_columns((pl.col("dates").dt.strftime("%b") + " " + (pl.col("dates").dt.strftime("%Y"))).alias('date_short'))
|
||||
df_calendar = df_calendar.with_columns((pl.col("dates").dt.strftime("%Y") + " " + (pl.col("dates").dt.strftime("%m"))).alias('dates'))
|
||||
|
||||
df_calendar = df_calendar.group_by(['dates', 'date_short']).agg(pl.col("column_0").sum())
|
||||
|
||||
|
||||
df_calendar = df_calendar.group_by(['dates', 'date_short', 'numDays']).agg(pl.col("column_0").sum())
|
||||
df_calendar = df_calendar.with_columns((pl.col("column_0") / pl.col("numDays") / 2 * 100).alias("column_0"))
|
||||
df_calendar = df_calendar.sort('dates')
|
||||
df_calendar = df_calendar.drop('dates')
|
||||
result = {"scraping-date": scrapeDate, "months": df_calendar['date_short'].to_list(), 'capacities': df_calendar['column_0'].to_list()}
|
||||
result = {"months": df_calendar['date_short'].to_list(), 'capacities': df_calendar['column_0'].to_list()}
|
||||
etl_cache.saveObj(file, result)
|
||||
return result
|
|
@ -19,11 +19,12 @@ def calcHaversinDistance(latMain, lonMain, lat, lon):
|
|||
dlat = latMain - lat
|
||||
|
||||
a = sin(dlat / 2) ** 2 + cos(lat) * cos(latMain) * sin(dlon / 2) ** 2
|
||||
c = 2 * asin(sqrt(a)) # 2 * atan2(sqrt(a), sqrt(1-a))
|
||||
c = 2 * atan2(sqrt(a), sqrt(1-a))
|
||||
d = R * c
|
||||
|
||||
return d
|
||||
|
||||
|
||||
def property_neighbours(id: int):
|
||||
|
||||
file = f"etl_property_neighbours_{id}.obj"
|
||||
|
@ -46,7 +47,6 @@ def property_neighbours(id: int):
|
|||
extractions = extractions.filter(pl.col('id') != str(id))
|
||||
|
||||
# Split coordinate into lat and lon
|
||||
#extractions = extractions.with_columns((pl.col('coordinates').str.split(','))[0].alias("coordinates")).unnest("fields")
|
||||
extractions = extractions.with_columns(pl.col("coordinates").str.split_exact(",", 1).struct.rename_fields(["lat", "lon"]).alias("lat/lon")).unnest("lat/lon")
|
||||
extractions = extractions.drop('coordinates')
|
||||
extractions = extractions.with_columns(pl.col("lat").cast(pl.Float32))
|
||||
|
@ -67,7 +67,6 @@ def property_neighbours(id: int):
|
|||
extractions = extractions.sort("distances").head(10)
|
||||
extractions = extractions.drop('distances')
|
||||
|
||||
#result = {"ids": extractions['id'].to_list(), "lat": extractions['lat'].to_list(), "lon": extractions['lon'].to_list()}
|
||||
result = extractions.to_dicts()
|
||||
etl_cache.saveObj(file, result)
|
||||
|
||||
|
|
|
@ -1,65 +0,0 @@
|
|||
import data
|
||||
import polars as pl
|
||||
from io import StringIO
|
||||
import numpy as np
|
||||
|
||||
|
||||
d = data.load()
|
||||
|
||||
def region_capacities_comparison(id_1: int, id_2: int):
|
||||
fulldf = d.capacity_comparison_of_region(id_1, id_2).pl()
|
||||
# turn PropertyIDs and seedIDs to ints for sorting and filtering
|
||||
fulldf = fulldf.cast({"property_id": int})
|
||||
fulldf = fulldf.cast({"seed_id": int})
|
||||
df_region1 = fulldf.filter(pl.col("seed_id") == id_1)
|
||||
df_region2 = fulldf.filter(pl.col("seed_id") == id_2)
|
||||
df_list = [df_region1, df_region2]
|
||||
outDictList = []
|
||||
|
||||
for df in df_list:
|
||||
# Get uniques for dates and propIDs and sort them
|
||||
listOfDates = df.get_column("ScrapeDate").unique().sort()
|
||||
listOfPropertyIDs = df.get_column("property_id").unique().sort()
|
||||
|
||||
# Create DFs from lists to merge later
|
||||
datesDF = pl.DataFrame(listOfDates).with_row_index("date_index")
|
||||
propIdDF = pl.DataFrame(listOfPropertyIDs).with_row_index("prop_index")
|
||||
|
||||
# Merge Dataframe to generate indices
|
||||
df = df.join(datesDF, on='ScrapeDate')
|
||||
df = df.join(propIdDF, on='property_id')
|
||||
# Drop now useless columns ScrapeDate and property_id
|
||||
df = df[['ScrapeDate', 'calendarBody', 'date_index', 'prop_index']]
|
||||
# Calculate grid values
|
||||
gridData = []
|
||||
for row in df.rows(named=True):
|
||||
# Return 0 for sum if calendar is null
|
||||
if row['calendarBody']:
|
||||
calDF = pl.read_json(StringIO(row['calendarBody']))
|
||||
sum_hor = calDF.sum_horizontal()[0]
|
||||
else:
|
||||
sum_hor = 0
|
||||
# With Index
|
||||
# gridData.append([row['prop_index'], row['date_index'], sum_hor])
|
||||
# With ScrapeDate
|
||||
gridData.append([row['ScrapeDate'], row['date_index'], sum_hor])
|
||||
|
||||
gridData = np.array(gridData)
|
||||
# get all values to calculate Max
|
||||
allValues = gridData[:, 2].astype(int)
|
||||
maxValue = np.max(allValues)
|
||||
gridData[:, 2] = (allValues*100)/maxValue
|
||||
|
||||
# Return back to list
|
||||
gridData = gridData.tolist()
|
||||
|
||||
# Cast listOfDates to datetime
|
||||
listOfDates = listOfDates.cast(pl.Date).to_list()
|
||||
listOfPropertyIDs = listOfPropertyIDs.to_list()
|
||||
|
||||
# Create JSON
|
||||
tempDict = {'scrapeDates': listOfDates, 'property_ids': listOfPropertyIDs, 'values': gridData}
|
||||
outDictList.append(tempDict)
|
||||
|
||||
outDict = {'region1': outDictList[0], 'region2': outDictList[1],}
|
||||
return outDict
|
|
@ -8,16 +8,13 @@ from data import etl_cache
|
|||
|
||||
d = data.load()
|
||||
|
||||
def region_capacities_weekdays(id: int, scrapeDate_start: str):
|
||||
def region_capacities_daily(id: int, scrapeDate_start: str):
|
||||
|
||||
file = f"etl_region_capacities_weekdays_{id}_{scrapeDate_start}.obj"
|
||||
obj = etl_cache.openObj(file)
|
||||
if obj:
|
||||
return obj
|
||||
|
||||
# String to Date
|
||||
scrapeDate_start = datetime.strptime(scrapeDate_start, '%Y-%m-%d')
|
||||
|
||||
# Get end date of start search-window
|
||||
scrapeDate_end = scrapeDate_start + timedelta(days=1)
|
||||
|
||||
|
@ -62,6 +59,6 @@ def region_capacities_weekdays(id: int, scrapeDate_start: str):
|
|||
outDf = outDf.insert_column(1, means)
|
||||
outDf = outDf[['weekday', 'mean']]
|
||||
|
||||
result = {"scraping-date": scrapeDate, "weekdays": outDf['weekday'].to_list(),'capacities': outDf['mean'].to_list()}
|
||||
result = {"weekdays": outDf['weekday'].to_list(),'capacities': outDf['mean'].to_list()}
|
||||
etl_cache.saveObj(file, result)
|
||||
return result
|
|
@ -16,9 +16,6 @@ def region_capacities_monthly(id: int, scrapeDate_start: str):
|
|||
if obj:
|
||||
return obj
|
||||
|
||||
# String to Date
|
||||
scrapeDate_start = datetime.strptime(scrapeDate_start, '%Y-%m-%d')
|
||||
|
||||
# Get end date of start search-window
|
||||
scrapeDate_end = scrapeDate_start + timedelta(days=1)
|
||||
|
||||
|
@ -41,11 +38,14 @@ def region_capacities_monthly(id: int, scrapeDate_start: str):
|
|||
df_calendar = df_calendar.transpose()
|
||||
df_calendar = df_calendar.with_columns(pl.Series(name="dates", values=columnTitles))
|
||||
df_calendar = df_calendar.with_columns((pl.col("dates").str.to_date()))
|
||||
df_calendar = df_calendar.with_columns((pl.col("dates").dt.month_end().dt.day().alias('numDays')))
|
||||
df_calendar = df_calendar.with_columns((pl.col("dates").dt.strftime("%b") + " " + (pl.col("dates").dt.strftime("%Y"))).alias('date_short'))
|
||||
df_calendar = df_calendar.with_columns((pl.col("dates").dt.strftime("%Y") + " " + (pl.col("dates").dt.strftime("%m"))).alias('dates'))
|
||||
df_calendar = df_calendar.group_by(['dates', 'date_short']).agg(pl.col("column_0").sum())
|
||||
df_calendar = df_calendar.group_by(['dates', 'date_short','numDays']).agg(pl.col("column_0").sum())
|
||||
df_calendar = df_calendar.with_columns((pl.col("column_0") / pl.col("numDays") / 2 * 100).alias("column_0"))
|
||||
df_calendar = df_calendar.sort('dates')
|
||||
df_calendar = df_calendar.drop('dates')
|
||||
df_calendar = df_calendar.drop('numDays')
|
||||
|
||||
df_calendar = df_calendar.rename({'column_0': str(counter)})
|
||||
|
||||
|
@ -60,6 +60,6 @@ def region_capacities_monthly(id: int, scrapeDate_start: str):
|
|||
outDf = outDf.insert_column(1, means)
|
||||
outDf = outDf[['date_short', 'mean']]
|
||||
|
||||
result = {"scraping-date": scrapeDate, "months": outDf['date_short'].to_list(),'capacities': outDf['mean'].to_list()}
|
||||
result = {"date": scrapeDate, "months": outDf['date_short'].to_list(),'capacities': outDf['mean'].to_list()}
|
||||
etl_cache.saveObj(file, result)
|
||||
return result
|
|
@ -8,7 +8,7 @@ from data import etl_cache
|
|||
|
||||
d = data.load()
|
||||
|
||||
def region_movingAverage(id: int, scrape_date_start_min: str):
|
||||
def region_movingAverage(id: int, scrape_date_start_min: datetime.date):
|
||||
|
||||
file = f"etl_region_movingAverage_{id}_{scrape_date_start_min}.obj"
|
||||
obj = etl_cache.openObj(file)
|
||||
|
@ -31,9 +31,6 @@ def region_movingAverage(id: int, scrape_date_start_min: str):
|
|||
uniqueScrapeDates = uniqueScrapeDates.get_column('ScrapeDate').str.to_date()
|
||||
uniqueScrapeDates = uniqueScrapeDates.sort().to_list()
|
||||
|
||||
# String to Date
|
||||
scrape_date_start_min = datetime.strptime(scrape_date_start_min, '%Y-%m-%d')
|
||||
|
||||
# Get end date of start search-window
|
||||
scrape_date_start_max = scrape_date_start_min + timedelta(days=1)
|
||||
|
||||
|
@ -41,7 +38,7 @@ def region_movingAverage(id: int, scrape_date_start_min: str):
|
|||
scrape_date_end_min = scrape_date_start_min + timedelta(days=timeOffset)
|
||||
|
||||
# Get closest ScrapeDate
|
||||
scrape_date_end_min = min(uniqueScrapeDates, key=lambda x: abs(x - scrape_date_end_min.date()))
|
||||
scrape_date_end_min = min(uniqueScrapeDates, key=lambda x: abs(x - scrape_date_end_min))
|
||||
scrape_date_end_max = scrape_date_end_min + timedelta(days=1)
|
||||
|
||||
final_end_date = scrape_date_end_min + timedelta(days=calcFrame)
|
||||
|
@ -78,7 +75,7 @@ def region_movingAverage(id: int, scrape_date_start_min: str):
|
|||
calDF = calDF.with_columns((pl.col("dates").str.to_date()))
|
||||
|
||||
# Filter out all Data that's in the calculation frame
|
||||
calDF = calDF.filter((pl.col("dates") >= scrape_date_end_min))
|
||||
calDF = calDF.filter((pl.col("dates") >= (scrape_date_start_min + timedelta(days=1))))
|
||||
calDF = calDF.filter((pl.col("dates") < final_end_date))
|
||||
|
||||
# Join all information into one Dataframe
|
||||
|
@ -93,6 +90,7 @@ def region_movingAverage(id: int, scrape_date_start_min: str):
|
|||
outDF = outDF.sort('dates')
|
||||
outDFList.append(outDF)
|
||||
|
||||
|
||||
# Calculate the horizontal Sum for all Dates
|
||||
arrayCunter = 0
|
||||
tempDFList = []
|
||||
|
@ -108,14 +106,13 @@ def region_movingAverage(id: int, scrape_date_start_min: str):
|
|||
tempDFList.append(newDF)
|
||||
|
||||
# Join actual and predict Values
|
||||
outDF = tempDFList[1].join(tempDFList[0], on='dates', how='outer')
|
||||
outDF = tempDFList[0].join(tempDFList[1], on='dates', how='outer')
|
||||
|
||||
# Rename Columns for clarity
|
||||
outDF = outDF.drop_nulls()
|
||||
outDF = outDF.drop('dates_right')
|
||||
|
||||
# sum_hor_predict is the data from the earlier ScrapeDate
|
||||
outDF = outDF.rename({'sum_hor': 'sum_hor_actual', 'sum_hor_right': 'sum_hor_predict'})
|
||||
outDF = outDF.rename({'sum_hor_right': 'sum_hor_actual', 'sum_hor': 'sum_hor_predict'})
|
||||
|
||||
# Calculate Moving average from Start
|
||||
baseValues = outDF.get_column('sum_hor_predict').to_list()
|
||||
|
@ -133,6 +130,7 @@ def region_movingAverage(id: int, scrape_date_start_min: str):
|
|||
|
||||
# Add moving_averages to df
|
||||
outDF = outDF.with_columns(moving_averages=pl.Series(moving_averages))
|
||||
result = {'dates':outDF.get_column('dates').to_list(), 'cap_earlierTimeframe':outDF.get_column('sum_hor_predict').to_list(), 'cap_laterTimeframe':outDF.get_column('sum_hor_actual').to_list(), 'movAvg':outDF.get_column('moving_averages').to_list(),}
|
||||
|
||||
result = {'dates': outDF.get_column('dates').to_list(), 'capacities_timeframe_before': outDF.get_column('sum_hor_predict').to_list(), 'capacities_timeframe_after':outDF.get_column('sum_hor_actual').to_list(), 'capacities_moving_average':outDF.get_column('moving_averages').to_list(),}
|
||||
etl_cache.saveObj(file, result)
|
||||
return result
|
|
@ -52,13 +52,13 @@ def region_properties_capacities(id: int):
|
|||
|
||||
for row in gridData.rows(named=True):
|
||||
capacity = (row['sum_hor']*100)/maxValue
|
||||
values.append((row['scrape_date'], row['property_id'], capacity))
|
||||
values.append({"date" : row['scrape_date'], "property_id": row['property_id'], "capacity": capacity})
|
||||
|
||||
# Cast listOfDates to datetime
|
||||
listOfDates = listOfDates.cast(pl.Date).to_list()
|
||||
listOfPropertyIDs = listOfPropertyIDs.cast(pl.String).to_list()
|
||||
|
||||
# Create JSON
|
||||
outDict = {'scrapeDates': listOfDates, 'property_ids': listOfPropertyIDs, 'values': values}
|
||||
outDict = {'dates': listOfDates, 'property_ids': listOfPropertyIDs, 'values': values}
|
||||
etl_cache.saveObj(file, outDict)
|
||||
return outDict
|
|
@ -1,199 +0,0 @@
|
|||
import MySQLdb
|
||||
import json
|
||||
from datetime import datetime, timedelta
|
||||
import numpy as np
|
||||
|
||||
|
||||
def getPropertyDataFromDB():
|
||||
db = MySQLdb.connect(host="localhost",user="root",passwd="admin",db="consultancy")
|
||||
cur = db.cursor()
|
||||
|
||||
cur.execute("SELECT id, seed_id, check_data "
|
||||
"FROM properties ")
|
||||
propData = cur.fetchall()
|
||||
db.close()
|
||||
|
||||
return propData
|
||||
|
||||
def getDataFromDB(propId):
|
||||
'''
|
||||
Function to get data from MySQL database filter with the given propId
|
||||
:return: scrapeDates and calendarData
|
||||
'''
|
||||
db = MySQLdb.connect(host="localhost",user="root",passwd="admin",db="consultancy")
|
||||
cur = db.cursor()
|
||||
|
||||
cur.execute("SELECT JSON_EXTRACT(header, '$.Date') "
|
||||
"FROM extractions "
|
||||
f"WHERE type='calendar' AND property_id = {propId};")
|
||||
scrapeDates = cur.fetchall()
|
||||
|
||||
cur.execute("SELECT JSON_EXTRACT(body, '$.content.days') "
|
||||
"FROM extractions "
|
||||
f"WHERE type='calendar' AND property_id = {propId};")
|
||||
calendarData = cur.fetchall()
|
||||
db.close()
|
||||
|
||||
return scrapeDates, calendarData
|
||||
|
||||
def getUniqueScrapeDates():
|
||||
db = MySQLdb.connect(host="localhost",user="root",passwd="admin",db="consultancy")
|
||||
cur = db.cursor()
|
||||
|
||||
cur.execute("SELECT JSON_EXTRACT(header, '$.Date') "
|
||||
"FROM extractions "
|
||||
f"WHERE type='calendar'")
|
||||
uniqueScrapeDates = cur.fetchall()
|
||||
db.close()
|
||||
|
||||
return uniqueScrapeDates
|
||||
|
||||
def getPropsPerScrape(scrapeDate):
|
||||
date = datetime.strptime(scrapeDate, '%Y-%m-%d')
|
||||
end_date = date + timedelta(days=1)
|
||||
|
||||
db = MySQLdb.connect(host="localhost",user="root",passwd="admin",db="consultancy")
|
||||
cur = db.cursor()
|
||||
|
||||
cur.execute("SELECT property_id "
|
||||
"FROM extractions "
|
||||
f"WHERE type='calendar' AND created_at > '{scrapeDate}' AND created_at < '{str(end_date)}'")
|
||||
uniqueScrapeDates = cur.fetchall()
|
||||
db.close()
|
||||
|
||||
return uniqueScrapeDates
|
||||
|
||||
def getuniquePropIdFromDB():
|
||||
'''
|
||||
Function to get unique propId from MySQL database
|
||||
:return: propList
|
||||
'''
|
||||
db = MySQLdb.connect(host="localhost",user="root",passwd="admin",db="consultancy")
|
||||
cur = db.cursor()
|
||||
cur.execute("SELECT DISTINCT property_id "
|
||||
"FROM extractions;")
|
||||
propIds = cur.fetchall()
|
||||
db.close()
|
||||
|
||||
propList = []
|
||||
for propId in propIds:
|
||||
propList.append(propId[0])
|
||||
|
||||
return propList
|
||||
|
||||
def reformatScrapeDates(scrapeDatesIn):
|
||||
'''
|
||||
Reformats the scrapeDates column to a shortened datetime format
|
||||
:param scrapeDatesIn:
|
||||
:return:
|
||||
'''
|
||||
scrapeDates = []
|
||||
for row in scrapeDatesIn:
|
||||
date = datetime.strptime(json.loads(row[0])[0], '%a, %d %b %Y %H:%M:%S %Z').date()
|
||||
str = date.strftime('%Y-%m-%d')
|
||||
scrapeDates.append(str)
|
||||
|
||||
return scrapeDates
|
||||
|
||||
def checkForLostProprty(calendarData):
|
||||
'''
|
||||
Checks if there are "None" Entries in the calendarData meaning they were no longer found
|
||||
:param calendarData:
|
||||
:return: Boolean indicating if there are "None" Entries in the calendarData
|
||||
'''
|
||||
for row in calendarData:
|
||||
if None in row:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def getMinMaxDate(calendarData):
|
||||
'''
|
||||
Gets the min and max values from a calendar data
|
||||
:param calendarData: get all calendar data from querry
|
||||
:return: the minimal and maximal date
|
||||
'''
|
||||
#minimales und maximales Datum ermitteln
|
||||
fullDateList = []
|
||||
for row in calendarData:
|
||||
tempJson = json.loads(row[0]).keys()
|
||||
for key in tempJson:
|
||||
#print(key)
|
||||
fullDateList.append(datetime.strptime(key, '%Y-%m-%d').date())
|
||||
|
||||
end_dt = max(fullDateList)
|
||||
start_dt = min(fullDateList)
|
||||
delta = timedelta(days=1)
|
||||
HeaderDates = []
|
||||
|
||||
while start_dt <= end_dt:
|
||||
HeaderDates.append(start_dt)
|
||||
start_dt += delta
|
||||
|
||||
return HeaderDates
|
||||
|
||||
|
||||
def creatDataMatrix(HeaderDates, calendarData):
|
||||
'''
|
||||
Creates the data matrix from a calendar data
|
||||
:param HeaderDates: The list of all possible Dates in the dataset is used as the headers
|
||||
:param calendarData: the main information from the sql querry
|
||||
:return: data Matrix with all the dates in the dataset
|
||||
'''
|
||||
data = []
|
||||
for row in calendarData:
|
||||
tempList = [-1] * len(HeaderDates)
|
||||
tempJson = json.loads(row[0])
|
||||
for key in tempJson:
|
||||
date = datetime.strptime(key, '%Y-%m-%d').date()
|
||||
content = tempJson[key]
|
||||
index = [i for i, x in enumerate(HeaderDates) if x == date]
|
||||
tempList[index[0]] = content
|
||||
data.append(tempList)
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def getAccuracy(df, baseLine, compLine):
|
||||
'''
|
||||
Calculates the accuracy of a given dataframe with a given baseLine and compLine
|
||||
:param df:
|
||||
:param baseLine:
|
||||
:param compLine:
|
||||
:return: Accuracy: The percentage of dates that had the same information in both baseLine and compLine
|
||||
'''
|
||||
try:
|
||||
df = df.iloc[[baseLine,compLine]]
|
||||
except IndexError:
|
||||
return -1
|
||||
total = 0
|
||||
noChange = 0
|
||||
first = True
|
||||
for series_name, series in df.items():
|
||||
if first:
|
||||
first = False
|
||||
else:
|
||||
total += 1
|
||||
#print(series_name)
|
||||
if series[baseLine] != -1:
|
||||
if series[compLine] != -1:
|
||||
if series[baseLine] == series[compLine]:
|
||||
noChange += 1
|
||||
|
||||
accuracy = noChange / total
|
||||
return accuracy
|
||||
|
||||
def getMeanAccuracy(accList):
|
||||
'''
|
||||
Get the mean Accuracy of the entire timedelay of one property
|
||||
:param accList: List of accuracy Values of a comparison
|
||||
:return: Average of the accuracy values while ignoring the '-1' values
|
||||
'''
|
||||
out = []
|
||||
for row in accList:
|
||||
row = [x for x in row if x != -1]
|
||||
out.append(np.average(row))
|
||||
return out
|
||||
|
||||
|
||||
|
|
@ -1,83 +0,0 @@
|
|||
from datetime import datetime, timedelta
|
||||
import json
|
||||
|
||||
import MySQLdb #Version 2.2.4
|
||||
import pandas as pd #Version 2.2.3
|
||||
import plotly.express as px #Version 5.24.1
|
||||
|
||||
db = MySQLdb.connect(host="localhost",user="root",passwd="admin",db="consultancy")
|
||||
cur = db.cursor()
|
||||
|
||||
cur.execute("SELECT JSON_EXTRACT(header, '$.Date') "
|
||||
"FROM extractions "
|
||||
"WHERE type='calendar' AND property_id = 200;")
|
||||
dateoutput = cur.fetchall()
|
||||
|
||||
|
||||
cur.execute("SELECT JSON_EXTRACT(body, '$.content.days') "
|
||||
"FROM extractions "
|
||||
"WHERE type='calendar' AND property_id = 200;")
|
||||
|
||||
output = cur.fetchall()
|
||||
db.close()
|
||||
|
||||
#createScrapedate Liste
|
||||
ytickVals = list(range(0, 30, 5))
|
||||
scrapeDates = []
|
||||
#print(dateoutput)
|
||||
for row in dateoutput:
|
||||
date = datetime.strptime(json.loads(row[0])[0], '%a, %d %b %Y %H:%M:%S %Z').date()
|
||||
str = date.strftime('%d/%m/%Y')
|
||||
scrapeDates.append(str)
|
||||
|
||||
#minimales und maximales Datum ermitteln
|
||||
fullDateList = []
|
||||
for row in output:
|
||||
tempJson = json.loads(row[0]).keys()
|
||||
for key in tempJson:
|
||||
#print(key)
|
||||
fullDateList.append(datetime.strptime(key, '%Y-%m-%d').date())
|
||||
|
||||
end_dt = max(fullDateList)
|
||||
start_dt = min(fullDateList)
|
||||
delta = timedelta(days=1)
|
||||
HeaderDates = []
|
||||
|
||||
while start_dt <= end_dt:
|
||||
HeaderDates.append(start_dt)
|
||||
start_dt += delta
|
||||
|
||||
#Create data-Matrix
|
||||
data = []
|
||||
for row in output:
|
||||
tempList = [-1] * len(HeaderDates)
|
||||
tempJson = json.loads(row[0])
|
||||
for key in tempJson:
|
||||
date = datetime.strptime(key, '%Y-%m-%d').date()
|
||||
content = tempJson[key]
|
||||
index = [i for i, x in enumerate(HeaderDates) if x == date]
|
||||
tempList[index[0]] = content
|
||||
data.append(tempList)
|
||||
|
||||
#Transform to Dataframe for Plotly
|
||||
df = pd.DataFrame(data, columns=HeaderDates)
|
||||
|
||||
#Generate Plotly Diagramm
|
||||
colScale = [[0, 'rgb(0, 0, 0)'], [0.33, 'rgb(204, 16, 16)'], [0.66, 'rgb(10, 102, 15)'], [1, 'rgb(17, 184, 26)']]
|
||||
fig = px.imshow(df, color_continuous_scale= colScale)
|
||||
lines = list(range(0,30,1))
|
||||
for i in lines:
|
||||
#fig.add_hline(y=i+0.5, line_color="white")
|
||||
fig.add_hline(y=i+0.5)
|
||||
|
||||
fig.update_layout(yaxis = dict(tickfont = dict(size=50))),
|
||||
fig.update_layout(xaxis = dict(tickfont = dict(size=50)))
|
||||
fig.update_layout(xaxis_title="Verfügbarkeitsdaten Mietobjekt", yaxis_title="Scrapingvorgang")
|
||||
fig.update_xaxes(title_font_size=100, title_font_weight="bold")
|
||||
fig.update_yaxes(title_font_size=100, title_font_weight="bold")
|
||||
fig.update_layout(yaxis = dict(tickmode = 'array',tickvals = ytickVals, ticktext = scrapeDates))
|
||||
fig.update_xaxes(title_standoff = 80)
|
||||
fig.update_yaxes(title_standoff = 80)
|
||||
fig.update_layout(xaxis={'side': 'top'})
|
||||
fig.show()
|
||||
|
|
@ -1,58 +0,0 @@
|
|||
import Data_Analysis as DA
|
||||
import pandas as pd
|
||||
|
||||
accuracy = pd.read_csv(f'results/accMeanDf.csv')
|
||||
|
||||
propData = DA.getPropertyDataFromDB()
|
||||
propData = pd.DataFrame(propData, columns =['property_id', 'region', 'geoLocation'])
|
||||
propData = propData.drop(columns=['geoLocation'])
|
||||
#print(propData)
|
||||
|
||||
merge = pd.merge(propData, accuracy, on="property_id")
|
||||
#print(merge)
|
||||
|
||||
#1 = Heidiland, 2 = Davos, 3 = Engadin 4 = St.Moritz
|
||||
|
||||
heidiAcc = merge[merge['region'] == 1]
|
||||
davosAcc = merge[merge['region'] == 2]
|
||||
EngadAcc = merge[merge['region'] == 3]
|
||||
StMorAcc = merge[merge['region'] == 4]
|
||||
|
||||
|
||||
heidiMean = heidiAcc.mean(axis=0)
|
||||
davosMean = davosAcc.mean(axis=0)
|
||||
EngadMean = EngadAcc.mean(axis=0)
|
||||
StMorMean = StMorAcc.mean(axis=0)
|
||||
|
||||
heidiSDev = heidiAcc.std(axis=0)
|
||||
davosSDev = davosAcc.std(axis=0)
|
||||
EngadSDev = EngadAcc.std(axis=0)
|
||||
StMorSDev = StMorAcc.std(axis=0)
|
||||
|
||||
|
||||
accuracyOverview = pd.DataFrame()
|
||||
|
||||
accuracyOverview.insert(0, "St. Moritz StdDev", StMorSDev, True)
|
||||
accuracyOverview.insert(0, "St. Moritz Mean", StMorMean, True)
|
||||
accuracyOverview.insert(0, "Engadin StdDev", EngadSDev, True)
|
||||
accuracyOverview.insert(0, "Engadin Mean", EngadMean, True)
|
||||
accuracyOverview.insert(0, "Davos StdDev", davosSDev, True)
|
||||
accuracyOverview.insert(0, "Davos Mean", davosMean, True)
|
||||
accuracyOverview.insert(0, "Heidi StdDev", heidiSDev, True)
|
||||
accuracyOverview.insert(0, "Heidi Mean", heidiMean, True)
|
||||
|
||||
|
||||
accuracyOverview.drop(index=accuracyOverview.index[0], axis=0, inplace=True)
|
||||
accuracyOverview.drop(index=accuracyOverview.index[0], axis=0, inplace=True)
|
||||
accuracyOverview.to_csv('results/accuracyOverview.csv', index=True)
|
||||
|
||||
#delete unused DF's
|
||||
del merge, accuracy, propData
|
||||
del heidiAcc, davosAcc, EngadAcc, StMorAcc
|
||||
del heidiMean, davosMean, EngadMean, StMorMean
|
||||
del heidiSDev, davosSDev, EngadSDev, StMorSDev
|
||||
|
||||
|
||||
print(accuracyOverview)
|
||||
|
||||
|
|
@ -1,73 +0,0 @@
|
|||
import pandas as pd
|
||||
import os
|
||||
import re
|
||||
import numpy as np
|
||||
|
||||
def getAccuracy(df, baseLine, compLine):
|
||||
try:
|
||||
df = df.iloc[[baseLine,compLine]]
|
||||
except IndexError:
|
||||
return -1
|
||||
total = 0
|
||||
noChange = 0
|
||||
first = True
|
||||
for series_name, series in df.items():
|
||||
if first:
|
||||
first = False
|
||||
else:
|
||||
total += 1
|
||||
#print(series_name)
|
||||
if series[baseLine] != -1:
|
||||
if series[compLine] != -1:
|
||||
if series[baseLine] == series[compLine]:
|
||||
noChange += 1
|
||||
|
||||
accuracy = noChange / total
|
||||
return accuracy
|
||||
|
||||
def getMeanAccuracy(accList):
|
||||
out = []
|
||||
for row in accList:
|
||||
row = [x for x in row if x != -1]
|
||||
out.append(np.average(row))
|
||||
return out
|
||||
|
||||
deltaList = [1, 2, 10, 20]
|
||||
#1 = 1 Scrape Interval
|
||||
#2 = ca. 1 Woche
|
||||
#10 = 1 Monat (30Tage)
|
||||
#20 = 2 Monate
|
||||
|
||||
|
||||
directory = os.fsencode("dok")
|
||||
|
||||
columnNames = ['property_id', 'timedelay_1', 'timedelay_2','timedelay_10','timedelay_20']
|
||||
accListDf = pd.DataFrame(columns = columnNames)
|
||||
accMeanDf = pd.DataFrame(columns = columnNames)
|
||||
|
||||
|
||||
for file in os.listdir(directory):
|
||||
filename = os.fsdecode(file)
|
||||
if filename.endswith(".csv"):
|
||||
propId = re.findall("\d+", filename)[0]
|
||||
print(propId)
|
||||
df = pd.read_csv(f'dok/{filename}')
|
||||
fullList = []
|
||||
accList = []
|
||||
#Loop though all deltas in the deltaList
|
||||
for delta in deltaList:
|
||||
accList = []
|
||||
#Loop through all Dates as Baseline date
|
||||
for i in range(df.shape[0]):
|
||||
acc = getAccuracy(df, i, i+delta)
|
||||
accList.append(acc)
|
||||
fullList.append(accList)
|
||||
|
||||
|
||||
meanList = getMeanAccuracy(fullList)
|
||||
accListDf = accListDf._append({'property_id': propId, 'timedelay_1': fullList[0], 'timedelay_2': fullList[1], 'timedelay_10': fullList[2], 'timedelay_20': fullList[3]}, ignore_index=True)
|
||||
accMeanDf = accMeanDf._append({'property_id': propId, 'timedelay_1': meanList[0], 'timedelay_2': meanList[1], 'timedelay_10': meanList[2], 'timedelay_20': meanList[3]}, ignore_index=True)
|
||||
|
||||
|
||||
accListDf.to_csv('results/accListDf.csv', index=False)
|
||||
accMeanDf.to_csv('results/accMeanDf.csv', index=False)
|
|
@ -1,20 +0,0 @@
|
|||
import Data_Analysis as DA
|
||||
import csv
|
||||
|
||||
propIds = DA.getuniquePropIdFromDB()
|
||||
|
||||
lostProperties = []
|
||||
|
||||
for propId in propIds:
|
||||
print(propId)
|
||||
scrapeDates, calendarData = DA.getDataFromDB(propId)
|
||||
if DA.checkForLostProprty(calendarData):
|
||||
lostProperties.append(propId)
|
||||
|
||||
print(f"{len(lostProperties)} of {len(propIds)} properties are lost")
|
||||
|
||||
with open('results/allLostProperties', 'w') as f:
|
||||
write = csv.writer(f)
|
||||
write.writerow(lostProperties)
|
||||
|
||||
#Output: 221 of 1552 properties were lost at some point
|
|
@ -1,28 +0,0 @@
|
|||
import Data_Analysis as DA
|
||||
import pandas as pd
|
||||
import os
|
||||
|
||||
|
||||
|
||||
propIds = DA.getuniquePropIdFromDB()
|
||||
|
||||
for propId in propIds:
|
||||
name = f"dok/calendarData_prop{propId}.csv"
|
||||
if not os.path.exists(name):
|
||||
print(propId)
|
||||
scrapeDates, calendarData = DA.getDataFromDB(propId)
|
||||
if DA.checkForLostProprty(calendarData):
|
||||
print(f"Lost Proprty: {propId}")
|
||||
else:
|
||||
scrapeDates = DA.reformatScrapeDates(scrapeDates)
|
||||
HeaderDates = DA.getMinMaxDate(calendarData)
|
||||
data = DA.creatDataMatrix(HeaderDates, calendarData)
|
||||
|
||||
# Transform to Dataframe for Plotly
|
||||
df = pd.DataFrame(data, columns=HeaderDates)
|
||||
df.insert(0, "ScrapeDate", scrapeDates, True)
|
||||
|
||||
df = df.drop(index=0) # Irregulärer Abstand in den Scraping Zeiten (nur 2 Tage)
|
||||
df = df.drop(df.columns[[1, 2]], axis=1)
|
||||
df.to_csv(name, index=False)
|
||||
|
|
@ -1,32 +0,0 @@
|
|||
import Data_Analysis as DA
|
||||
import pandas as pd
|
||||
|
||||
#Alle Scrape Dates auslesen, umformatieren und doppelte Löschen
|
||||
uniqueScrapeDates = DA.getUniqueScrapeDates()
|
||||
uniqueScrapeDates = DA.reformatScrapeDates(uniqueScrapeDates)
|
||||
uniqueScrapeDates= list(dict.fromkeys(uniqueScrapeDates))
|
||||
#print(uniqueScrapeDates)
|
||||
|
||||
#Liste der Listen der properties pro Scrape Datum erstellen
|
||||
fullPropList = []
|
||||
for date in uniqueScrapeDates:
|
||||
propList = []
|
||||
strDate = date
|
||||
properties = DA.getPropsPerScrape(strDate)
|
||||
for prop in properties:
|
||||
propList.append(prop[0])
|
||||
propList = list(dict.fromkeys(propList))
|
||||
fullPropList.append(propList)
|
||||
#print(propList)
|
||||
print(fullPropList)
|
||||
|
||||
#zu DF umwandeln, mit Property ID's in the Spaltennamen und One-Hot-Encoding
|
||||
all_property_ids = sorted(set([item for sublist in fullPropList for item in sublist]))
|
||||
print(all_property_ids)
|
||||
df = pd.DataFrame(0, index=range(len(fullPropList)), columns=all_property_ids)
|
||||
for i, property_list in enumerate(fullPropList):
|
||||
df.loc[i, property_list] = 1
|
||||
|
||||
df.to_csv('results/PropertiesPerScrape.csv', index=True)
|
||||
|
||||
print(df)
|
|
@ -1,121 +0,0 @@
|
|||
from etl.src import data
|
||||
import json
|
||||
import polars as pl
|
||||
from datetime import datetime
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
'''
|
||||
# Get Data from DB
|
||||
inst = data.load()
|
||||
|
||||
df = inst.extractions_with_region().pl()
|
||||
print(df)
|
||||
|
||||
counter = 0
|
||||
data = []
|
||||
for row in df.iter_rows():
|
||||
property_id = row[1]
|
||||
created_at = row[2].date()
|
||||
dict = {'property_id': property_id, 'created_at': created_at, 'name': row[3]}
|
||||
|
||||
jsonStr = row[0]
|
||||
if jsonStr:
|
||||
calendarDict = json.loads(jsonStr)
|
||||
for key in calendarDict:
|
||||
dict[key] = calendarDict[key]
|
||||
|
||||
data.append(dict)
|
||||
|
||||
dfNew = pl.from_dicts(data)
|
||||
dfNew.write_csv('results/data_quality.csv')
|
||||
print(dfNew)
|
||||
|
||||
'''
|
||||
dfNew = pl.read_csv('results/data_quality.csv')
|
||||
dfNew = dfNew.with_columns(pl.col("created_at").map_elements(lambda x: datetime.strptime(x, "%Y-%m-%d").date()))
|
||||
|
||||
# Create Row Means
|
||||
dfTemp = dfNew
|
||||
# Temporary Remove leading columns but save for later
|
||||
prop = dfTemp.get_column('property_id')
|
||||
dfTemp = dfTemp.drop('property_id')
|
||||
crea = dfTemp.get_column('created_at')
|
||||
dfTemp = dfTemp.drop('created_at')
|
||||
name = dfTemp.get_column('name')
|
||||
dfTemp = dfTemp.drop('name')
|
||||
dfTemp = dfTemp.with_columns(sum=pl.sum_horizontal(dfTemp.columns))
|
||||
sumCol = dfTemp.get_column('sum')
|
||||
|
||||
# Create new DF with only property_id, created_at ,Location name and sum
|
||||
df = pl.DataFrame([prop, crea, name, sumCol])
|
||||
df = df.sort('created_at')
|
||||
|
||||
# Create Full Copy
|
||||
# 0 = Alles
|
||||
# 1 = Heidiland
|
||||
# 2 = Davos
|
||||
# 3 = Engadin
|
||||
# 4 = St. Moritz
|
||||
filterList = ['Alle Regionen', 'Heidiland', 'Davos', 'Engadin', 'St. Moritz']
|
||||
|
||||
filter = 4
|
||||
if filter != 0:
|
||||
df = df.filter(pl.col("name") == filter)
|
||||
|
||||
# Remove Location name
|
||||
df = df.drop('name')
|
||||
|
||||
|
||||
# Get unique property_ids
|
||||
propsIDs = df.unique(subset=["property_id"])
|
||||
propsIDs = propsIDs.get_column("property_id").to_list()
|
||||
propsIDs.sort()
|
||||
|
||||
# create Matrix
|
||||
matrix = []
|
||||
for id in propsIDs:
|
||||
dict = {}
|
||||
temp = df.filter(pl.col("property_id") == id)
|
||||
for row in temp.iter_rows():
|
||||
dict[row[1].strftime('%Y-%m-%d')] = row[2]
|
||||
matrix.append(dict)
|
||||
|
||||
matrix = pl.DataFrame(matrix)
|
||||
dates = matrix.columns
|
||||
matrix = matrix.to_numpy()
|
||||
# normalized
|
||||
matrix = matrix/1111
|
||||
|
||||
|
||||
yRange = range(len(dates))
|
||||
xRange = range(len(propsIDs))
|
||||
matrix = matrix.T
|
||||
plt.imshow(matrix)
|
||||
plt.yticks(yRange[::5], dates[::5])
|
||||
plt.xticks(xRange[::10], propsIDs[::10])
|
||||
plt.title(filterList[filter])
|
||||
plt.xlabel("Property ID")
|
||||
plt.ylabel("Scrape Date")
|
||||
plt.colorbar()
|
||||
plt.tight_layout()
|
||||
|
||||
# Create DiffMatrix
|
||||
diffMatrix = np.zeros((len(matrix)-1, len(matrix[0])))
|
||||
for y in range(len(matrix[0])):
|
||||
for x in range(len(matrix)-1):
|
||||
diffMatrix[x][y] = abs(matrix[x][y] - matrix[x+1][y])
|
||||
|
||||
plt.figure()
|
||||
plt.imshow(diffMatrix, cmap="Reds")
|
||||
plt.yticks(yRange[::5], dates[::5])
|
||||
plt.xticks(xRange[::10], propsIDs[::10])
|
||||
plt.title(filterList[filter])
|
||||
plt.xlabel("Property ID")
|
||||
plt.ylabel("Scrape Date")
|
||||
plt.colorbar()
|
||||
plt.tight_layout()
|
||||
|
||||
plt.show()
|
||||
|
||||
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue