main.py updated
This commit is contained in:
parent
76eaa4aa4e
commit
deb2fb80ae
82
main.py
82
main.py
@ -9,8 +9,88 @@ from sklearn.neighbors import KNeighborsClassifier
|
|||||||
from sklearn.tree import DecisionTreeClassifier
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
from sklearn.preprocessing import LabelEncoder
|
from sklearn.preprocessing import LabelEncoder
|
||||||
|
|
||||||
|
FEATURES = ["points", "x", "y"]
|
||||||
|
|
||||||
|
# create dataframe from csv and drop any row with null values
|
||||||
|
def load_dataframe():
|
||||||
|
try:
|
||||||
|
colum_list = FEATURES
|
||||||
|
#df = pd.read_csv("data/shots_dev.csv", usecols = colum_list).dropna()
|
||||||
|
df = pd.read_csv("data/shots.csv", usecols = colum_list).dropna()
|
||||||
|
return df
|
||||||
|
except FileNotFoundError as error:
|
||||||
|
print(error)
|
||||||
|
quit()
|
||||||
|
|
||||||
|
def calc_f1_macro(y_true, y_pred):
|
||||||
|
f1_scores = []
|
||||||
|
for column in y_true:
|
||||||
|
score = calc_f1_score(y_true[column].values, y_pred[column])
|
||||||
|
f1_scores.append(score)
|
||||||
|
return np.mean(f1_scores)
|
||||||
|
|
||||||
|
def calc_f1_score(y_true, y_pred):
|
||||||
|
tp = np.sum(np.multiply([i==True for i in y_pred], y_true))
|
||||||
|
tn = np.sum(np.multiply([i==False for i in y_pred], [not(j) for j in y_true]))
|
||||||
|
fp = np.sum(np.multiply([i==True for i in y_pred], [not(j) for j in y_true]))
|
||||||
|
fn = np.sum(np.multiply([i==False for i in y_pred], y_true))
|
||||||
|
precision = calc_precision(tp, fp)
|
||||||
|
recall = calc_recall(tp, fn)
|
||||||
|
|
||||||
|
if precision != 0 and recall != 0:
|
||||||
|
f1 = (2 * precision * recall) / (precision + recall)
|
||||||
|
else:
|
||||||
|
f1 = 0
|
||||||
|
return f1
|
||||||
|
|
||||||
|
def calc_precision(tp, fp):
|
||||||
|
return tp / (tp + fp)
|
||||||
|
|
||||||
|
def calc_recall(tp, fn):
|
||||||
|
return tp / (tp + fn)
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
pass
|
df = load_dataframe()
|
||||||
|
#print(df.head())
|
||||||
|
|
||||||
|
'''sns.countplot(x = df["points"])
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
sns.scatterplot(x=df['x'], y=df['y'], hue=df['points'])
|
||||||
|
plt.show()'''
|
||||||
|
|
||||||
|
features = ["x", "y"]
|
||||||
|
|
||||||
|
X = df[features]
|
||||||
|
y = pd.get_dummies(df['points'])
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
|
||||||
|
|
||||||
|
random_forest = RandomForestClassifier(n_estimators=700, random_state=0)
|
||||||
|
decision_tree = DecisionTreeClassifier(random_state=0)
|
||||||
|
k_neighbors = KNeighborsClassifier(n_neighbors=5)
|
||||||
|
|
||||||
|
models = {
|
||||||
|
"Random Forest Classifier": random_forest,
|
||||||
|
"Decision Tree Classifier": decision_tree,
|
||||||
|
"K-Neighbors": k_neighbors
|
||||||
|
}
|
||||||
|
|
||||||
|
for name, model in models.items():
|
||||||
|
model.fit(X_train.values, y_train.values)
|
||||||
|
|
||||||
|
for name, model in models.items():
|
||||||
|
pred = model.predict(X_test.values)
|
||||||
|
|
||||||
|
my_f1_macro_score = calc_f1_macro(y_test, pd.DataFrame(pred))
|
||||||
|
print(f'My F1 score of {name} is {my_f1_macro_score}')
|
||||||
|
|
||||||
|
f1_sklearn = f1_score(y_test.values, pred, average='macro')
|
||||||
|
print(f'Sklearn F1 score of {name} is {f1_sklearn}')
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
Loading…
x
Reference in New Issue
Block a user