formula
This commit is contained in:
parent
4645b53a8f
commit
9277600a20
@ -60,8 +60,8 @@
|
|||||||
|Mittelwert|Summe aller Werte dividiert durch die Anzahl von Werten. $$\huge \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$|
|
|Mittelwert|Summe aller Werte dividiert durch die Anzahl von Werten. $$\huge \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$|
|
||||||
|Median|Mittlerer Wert der sortierten Liste. $$\huge \text{Median} = \begin{cases}x_{\left(\frac{n+1}{2}\right)}, & \text{wenn } n \text{ ungerade ist} \\ \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}, & \text{wenn } n \text{ gerade ist}\end{cases}$$|
|
|Median|Mittlerer Wert der sortierten Liste. $$\huge \text{Median} = \begin{cases}x_{\left(\frac{n+1}{2}\right)}, & \text{wenn } n \text{ ungerade ist} \\ \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}, & \text{wenn } n \text{ gerade ist}\end{cases}$$|
|
||||||
|Varianz|$$\displaystyle\huge Varianz = s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 }{n - 1}$$|
|
|Varianz|$$\displaystyle\huge Varianz = s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 }{n - 1}$$|
|
||||||
|Standardabweichung|$$\displaystyle\huge Standardabbwichung = s = sqrt{Varianz}$$|
|
|Standardabweichung|$$\displaystyle\huge Standardabbwichung = s = \sqrt{Varianz}$$|
|
||||||
|Mittlere Absolute Abweichung|$$\displaystyle\huge Mittlere Absolute Abwichung = \frac{\sum_{i=1}^{n} |x_i - \bar{x}|}{n - 1}$$|
|
| Mittlere Absolute Abweichung | $$\displaystyle\huge \text{Mittlere Absolute Abweichung} = \frac{\sum_{i=1}^{n} \lvert x_i - \bar{x} \rvert}{n - 1}$$ |
|
||||||
## Lineare Regression
|
## Lineare Regression
|
||||||
## Klassifikation
|
## Klassifikation
|
||||||
## Unsupervised Learning Clustering
|
## Unsupervised Learning Clustering
|
||||||
Loading…
x
Reference in New Issue
Block a user